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CHAPTER I

INTRODUCTION

Project overview

High efficiency particulate air (HEPA) filters are routinely employed in the
United States (U.S.) to control particulate matter (PM) emissions from processes that
involve management or treatment of radioactive materials. Facilities within the US
Department of Energy (DOE) complex are particularly likely to make use of HEPA
filters in the processing of exhaust gases prior to release to the environment [1].

Hazards associated with radioactive materials involved in nuclear applications
necessitate specialized containment systems to provide safety for employees, the general
public, and the environment. Nuclear grade HEPA filters are used in these specialized
containment systems as the last line of defense against the release of very small
radioactive particles. A nuclear grade HEPA filter is considered to be a throwaway,
extended-medium, dry-type filter with: (1) a minimum particle removal efficiency of
99.97% for a 0.3 um monodisperse particle cloud, (2) a maximum clean filter resistance
of 1 inch water column (w.c.) when operated at rated airflow capacity and (3) a rigid
frame extending the full depth of the medium. [2]. Current nuclear grade HEPA filters are
constructed of glass fiber media and are one time use filters that must be disposed of

safely when they reach their usable limit.[2]
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The usable limit for glass fiber HEPA filters is specified as when the filter reaches
3 to 5 inches w.c. greater than the initial differential pressure across the filter [1]. The
American Society of Mechanical Engineers (ASME) standard AG-1 lays out
requirements for filters that may be used for HEPA filtration in containment ventilation
systems. AG-1 contains two sections dealing with nuclear grade HEPA filters. These
sections are the standard for glass fiber media filters. AG-1 is currently in the process of
adding a non mandatory service life for fibrous glass HEPA filters as well as additional

sections to broaden the filter types available for nuclear applications [3].

Statement of need

The Institute for Clean Energy Technology (ICET) was awarded a contract by the
Department of Energy (DOE) to facilitate the necessary tasks for balloting ASME AG-1
Code on Nuclear Air and Gas Treatment Section FI for metal media filters. Development
of Section FI requires infrastructure to qualify FI filters and generation of performance
data to complete the code section. Initial funding for this project was provided by the
International Society for Nuclear Air Treatment Technologies (ISNATT). Additional
funding was provided by the U.S. DOE under cooperative agreement DE-FCO1-
06EW07040 and the National Nuclear Security Administration (NNSA) under contract

number DE-FC0O1-06EW07040-06040310.

Objectives

The objective of this project was to develop a research grade test stand capable of
achieving data needs to complete Section FI. Tasks for this project included:

e Identify performance criteria of the research grade test stand.
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e Test stand design, fabrication, assembly, and characterization
e Development of qualification protocols

e Collection of data to facilitate code development
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CHAPTER 1II

HISTORY OF HEPA FILTRATION

Origins of HEPA filtration

Development of HEPA filtration technology was triggered by the need for
protection against chemical agents used in World War I and II [4]. British and American
forces used gas masks with filter media composed of resin coated-wool [5]. British troops
captured several German made gas masks during World War II and sent them to the U.S.
Army Chemical Warfare Service Laboratory (CSW) for analysis [5]. The captured filters
used a medium composed of a blend of fine asbestos fibers and cellulose fibers [4]. The
asbestos and cellulose fiber filters were found to be superior to media used by the United
States or Britain because of their high particle retention characteristics, acceptable
resistance to airflow, good dust storage, and resistance to plugging from oil-type
screening smokes [1]. Media modeled after the captured German product was adapted by
US and British military [4].

The threat of chemical warfare directed against army operational headquarters
resulted in using the filter medium for large scale filters capable of higher flow rates [1].
Filters were constructed with deep pleats of continuous medium separated by spacer
panels and sealed into a rigid rectangular frame using rubber cement [2].

Filters, originally designed to keep harmful particulate matter out of army

operational head quarters were used to contain radioactive particulate matter during the
4
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Manhattan Project. The U.S. Army Chemical Corps was the sole supplier of high
performance filters for the Manhattan Project [5]. In 1948, the graphite moderated, air
cooled nuclear reactor at Oak Ridge National Laboratory was fitted with the army
designed filters after radioactive particles up to 600 pm in diameter were discovered on
the ground near the exhaust stacks [1]. These actions laid initial groundwork for
containment ventilation systems.

In the late 1940s HEPA filters were known as Atomic Energy Commission (AEC)
filters, nuclear filters, absolute, super-inception, or super-efficiency filters [1]. The term
absolute used to describe high efficiency filters is misleading because the media,
although highly efficient, does not stop all particles. The term absolute was dropped and
the filters began being known as high efficiency particulate air filters (HEPA). The term
HEPA became popular from an AEC report by Humphrey Gilbert titled, “High-
Efficiency Particulate Air Filter Units, Inspection, Handling, Installation” in 1961 [1].

Regulation of filters used exclusively in nuclear facilities became necessary to
ensure consistency among manufacturers. The U.S. military developed two military
codes for nuclear HEPA filters. The codes MIL-F-51068 Filter, Particulates, High-
Efficiency, Fire Resistant for fire-resistant filters and MIL-F-51079 Filter Medium, Fire-
Resistant, High-Efficiency, for glass fiber medium were issued in 1962 and 1963
respectively [1]. Nuclear power plants began to be seen as huge liabilities at the end of
the Cold War with realization of the problems associated with cleaning up radioactive
waste and the wide spread contamination at Chernobyl [6].Advancements in materials,
instruments, and changing requirements made it rational for standards to be consolidated.
ASME issued AG-1, Code on Nuclear Air and Gas Treatment, 1% Edition in 1984 to

5
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provide standards to the nuclear industry [2]. The standards for HEPA filters patterned
after MIL-SPEC standards were incorporated into Section FC of AG-1 in 1997. Section
FC was added to AG-1 to better establish performance requirements for the nuclear
industry [1]. The U.S. Department of Defense (DOD) consensus standards MIL-F-51068
and MIL-F-51079 became obsolete and were superseded in 1997 by AG-1 Section FC
[6].

ASME AG-1 addresses more filtration elements than just final stage HEPA filters
since different types of filters are used in nuclear applications. Nuclear grade HEPA
filters are described in ASME AG-1 Sections FC and FK [2]. Filters with lower
efficiencies are used before the final stage of HEPAs to prolong life and protect the
HEPA filters from damage [2]. Section FA discusses moisture separators that are used to
remove liquid droplets from the air. However, they are not high efficiency filtration
devices. Section FB and FJ discuss medium and low efficiency filters respectively that
are used in nuclear facilities to reduce particulate matter loading on HEPA filters [2]. A
final type of stage filters with HEPA efficiency that can be used are deep bed sand filters

as described in Section FL [2].

Filtering efficiency

Filtration efficiency is the comparison of the upstream concentration of aerosols
to the downstream concentration. Testing high efficiency filters typically involves two
types of efficiency measurements. The overall filtering efficiency for all particle sizes
measured is computed by simply comparing the total upstream concentration to the total
downstream concentration. The second type of efficiency measurement is based on

particle size. Overall efficiency gives a representation of the total efficiency of the filter
6
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but does not demonstrate compliance to HEPA standards. HEPA standards require the
filter to have a filtering efficiency of 99.97% for particles of diameter 0.3 um or greater
[2]. The total efficiency for particles greater than 0.3 pm may be less than 99.97%.
Therefore, the filter is not considered a HEPA filter even though the overall efficiency is
greater than 99.97% and appear to exceed the required efficiency. A filtering efficiency
curve is a plot of efficiencies as a function of particle size. The penetration curve is the
plot of 1-FE as a function of particle size. This is effectively the normalized fraction of
particles of a given diameter failing to be captured by the medium. The penetration curve
gives a more comprehensive representation of the filtering efficiency and performance of
the filter.

During the 1940s and 1950s significant advancements were made in filtration
theory by multiple contributors. Three names in particular stand out: Langmuir, Ramskill,
and Anderson [7].

Early air filtration theory focused on particle capture by a single fiber in an air
flow. These studies resulted in a greater understanding of factors affecting particle
capture by a fiber. Improved concepts of aerosol behavior have led to improvement in
HEPA filter designs to better serve the nuclear industry. The most penetrating particle
size (MPPS) was an important discovery that directly influenced the current definition of
HEPA filtering efficiency. Mechanisms that cause a MPPS were discovered by Langmuir
and later updated by Ramskill and Anderson [7]. Filtration studies determined that
decreasing fiber diameters produces, increased filtering efficiency without increasing the
pressure drop of the filter [6]. The theoretical MPPS was initially predicted to be 1.0 um

by Irving Langmuir [1]. However, Langmuir’s studies of particle retention on filter fibers
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focused on interception and diffusion as collection mechanisms. Research conducted by
Ramskill and Anderson modified Langmuir’s findings to include inertial effects also
known as impaction [1]. Combination of these three removal mechanisms resulted in a
predicted MPPS 0.3 um. The standard particle size of HEPA testing remains 0.3 pm as a
result of this study even though the MPPS for most HEPA filters is closer to 0.150 pm
[2].

Hinds gives detailed theoretical equations for determining filtering efficiency due
the five collection mechanisms for filtration. These filtration mechanisms include: inertial
impaction, interception, diffusion, gravitational settling and electrostatic attraction [7].
Four of the five collection mechanisms for filtration are discussed in detail in the
following paragraphs. Electrostatic filtration will not be discussed because it is not
applicable to this project.

Air flow through a filter is considered to be laminar and therefore predicting the
single fiber efficiency is highly dependent on streamlines and boundary layers. The single
fiber efficiency mechanisms were developed from the solution to the Navier-Stokes
equations for flow around a system of cylinders using the stream function for Kuwabara
flow [8]. Dimensionless parameters such as the Reynolds number, Stokes number, and
Peclet number play an important factor in filtration theory. The parameter known as
solidity is another important parameter in the performance of a filter. Solidity is
essentially the volume displaced by media fibers. Solidity (o) is defined in Equation 1.

The solidity of fibrous filters is typically between 0.01 and 0.3 [7].

__ Fiber Volume

(1)

" Total Volume
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Collection by interception occurs when a particle follows a gas streamline that
comes within one particle radius of the surface of a fiber. The single-fiber efficiency for
interception is dependent on the parameter R. R is the ratio of the diameter of the particle
to the diameter of the collection fiber [8]. Interception is the only collection mechanism
that is not a function of velocity. Dimensionless parameter R is shown in Equation 2. For
the following equations a is the solidity of fibers in a filter, d, is the particle diameter,

and ds is the fiber diameter.

_d
R=2 @

The variable R predicts the increase in collection efficiency by interception as
particle diameter increases and fiber diameter decreases. The Kuwabara hydrodynamic
factor (Ku) variable is used in calculation of single fiber filtering efficiency. Ku is a

function of the solidity of the filter and is defined in Equation 3.

Ku=-2@_3,,_ % 3)
2 4 4

The single fiber efficiency for interception is given by Equation 4 [8].

_ (1-wR?
" Ku(1+R)

4

R

The second mechanism Langmuir defined for collection was diffusion. Diffusion
is the result of Brownian motion of small particles. Brownian motion was observed by
Robert Brown as irregular motion of particles in gases due to collisions between gas
molecules. This motion causes very small particles to deviate from streamlines and
increases the probability of a particle hitting a fiber [9]. The single fiber efficiency due to

diffusion is a function of the dimensionless Peclet number shown in Equation 5 as
9
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developed by Jean Claude Eugene Peclet. The particle diffusion coefficient D is highly
dependent on particle size because of Brownian motion. Uy is the media velocity and dr is

the diameter of the fiber.

_ dflUp

Pe = (5)
The Peclet number is predicted to increase with an increase in fiber diameter and

reduction in the particle diameter. The single fiber efficiency for diffusion is reduced to a

function of only the Peclet number as seen in Equation 6 [10].

Ep = 2Pe~"/3 (6)
The efficiency due to diffusion is shown to decrease as Pe increases. Therefore,
Ep decreases with increasing particle size, increasing fiber diameter, and increasing
velocity. Ku is required to account for enhanced collection due to interception of the
diffusing particles when the single-fiber efficiency approaches minimum [8]. Lee and Liu
developed a multiple-cylinder model to account for flow interference effect of other

fibers. This corrected efficiency using the Ku is defined in Equation 7 [7].

1.24R?/3
Epr = W (7)

Ramskill and Anderson modified Langmuir’s findings to include inertial effects
of particle motion, known as impaction [11]. Impaction is the result of inertia of the
particle causing it to stray from the stream line and contact the filter fiber. Collection
efficiency of impaction will increase as the velocity or particle size increase. This
modification changed the predicted most penetrating particle size to 0.3 pm. The standard

particle size for HEPA testing still remains 0.3 um [2].
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The Stokes number governs impaction collection and is a dimensionless
characterization of curvilinear motion. A the particle is more likely to stray from
streamlines as the Stokes number increases and be collected on the filter fibers due to
impaction or interception. The Stokes number is given in Equation 8 where p;, is the

particle density, C. is the Cunningham Correction Factor and 7 is the dynamic viscosity.

Stk = PpdpCe Uo (8)
1817df

The Stokes number increases with increasing particle diameter and velocity and
decreases with increasing fiber diameter. Because the particle diameter is squared it has
much more effect on the change in the Stokes number. Variable J developed by Adolf
Fick is known as the flux and this relationship is known as Fick’s first law of diffusion.

This variable is defined in Equations 9 and 10 [7].

J = (29.6 — 28a%%%) x R? — 27.5R?*® for R < 0.4 9)
J=20forR>04 (10)
Single fiber efficiency for impaction is shown in Equation 11 [10]. As can be seen

from the Stokes number the collection efficiency of impaction increases with increasing

velocity, particle density and particle diameter.

(Stk)]
I = 2Ku)? (11)

Particle deposition due to gravity is dependent on the dimensionless variable G as

defined in Equation 12 [7]. This equation includes the gravitational acceleration g.

2
G = 2ateCed (12)
181Uy
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The single fiber efficiency for gravitational deposition is found using Equation 13
for Eg [7]. The sign for gravitational collection efficiency is dependent on the direction of

the flow.

E; =+G(1+R) (13)
The overall theoretical filtering efficiency is the summation of the single fiber

efficiencies of each collection mechanism. This is shown in Equation 14 [7].

Ey=1-(1—-Ep)(1—E)(—Ep)(1—Epr)(1 — Eg) (14)

It can be seen from the above equations that the individual fiber efficiency for
each mechanism contains multiple parameters and each filtering mechanism is
independent of others. If a single parameter in the filtering process is changed the overall
filtering efficiency will change. Penetration of HEPA filters by very small particles, less
than 1 pm, is directly velocity-dependant and increase significantly at very high airflow
rates. Diffusion is a time dependant phenomena and the longer the particles dwell near a
fiber the greater the possibility of capture. Penetration of HEPA filters by particles larger
than 1 um may increase at very low flow rates due to the reduction in effectiveness of the
impaction mechanism. The design of the filter is important but also the design of the
filtration system as a whole effects filter performance.

The single fiber efficiency equations do not account for the thickness of the filter.
To predict the efficiency of a filter the fibrous filters can be considered as made from
many thin layers of filter fibers. The equation for efficiency as a function of thickness is
shown in Equation 15 where t is filter thickness [12]. This equation predicts filter

efficiency will increases exponentially with filter thickness.
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E=1- exp(%?t) (15)

The experimental efficiency of a filter can be calculated or determined with
respect to either number collection efficiency or mass collection efficiency [7]. The
number collection efficiency is a comparison of the upstream and downstream
concentration. The mass efficiency is a comparison of the upstream mass to the
downstream mass.

The volume of a sphere increases as the cube of its radius. Therefore, as particles
increase in size by a factor of 10 their mass increases by a factor of 1000. Thus mass
removal efficiency is heavily weighted to removal of large particles. Number
concentration is shown in Equation 16. Where N represents the number of particles
counted. The mass collection efficiency is calculated using Equation 17. Where N and C

represent the number of particles and the mass of the sample collected respectively.

_ Nin_Nout
E = = (16)
Epy = SnCout (17)

Pressure drop is an important parameter in the function of HEPA filters. The
pressure drop across a filter is the result of net drag forces from each fiber in the medium
as airflows past it. The equation for predicting pressure drop is shown in Equation 18 [7].
Where 1 is the viscosity of the working fluid.

_ 64ntUgal®(1+56a°)
= %

4p (18)
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The dimensionless parameter qr represents filter energy efficiency. This quantity
is the ratio of efficiency over the pressure drop of a filter. The equation for filter energy

quality is given by Equation 19 [7].

_ In(1/(1-E))
== (19)

Media

Development of HEPA media began with the gas mask filters used during WWII
and has been improved to include a number of current media types. The basis for HEPA
filtration was laid during the early 1940s [1].

Filter media falls into two broad categories. The first is fibrous media which
includes glass, sintered metal, or plastic fibers. The second is granular media that
includes sintered metal powder, sand, and ceramic media. The most common type of
filter used current in the US the fibrous glass filter. Glass fiber filters offer high
efficiency with low pressure drop. Glass fiber filters are susceptible to damage from
conditions such as high temperatures, moisture, and chemicals. Metal and ceramic filters
offer protection against some of these conditions but also produce much higher pressure
drops [13]. The increased pressure drop reduces the filter quality parameter qr but may be
a welcomed trade off for increased protection under certain conditions.

Development and testing of new media for filtration applications has focused on
efficiency, pressure drop, durability, and loading capacity. Filters efficiency is an obvious
first priority for nuclear HEPA filtration. The other three areas of media focus are largely
due to cost effectiveness of the filters. Low pressure drop filter allows for easier air flow

and directly affects the parameter known as the filter energy quality. Durability and
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loading capacity help to increase safety and reduce costs by reducing the chance to
exposure from having to change out fully loaded or damaged filters as well as reducing
the number of filters used.

Challenge aerosols produced by different process have different size distributions.
The current version of AG-1 requires qualififaction testing using 0.3 um aerosols from
one of three compounds:, dioctylphthalate (DOP), dioctylsebacate (DOS/DEHS), and 4
centisoke poly-alphaolephin (PAO). Traditionally the test aerosol of choice is DOP [2].
Aerosol from liquid DOP is produced using a thermal aerosol generator or a Laskin
nozzle generator. Thermal aerosol generators pass a liquid through a heat exchanger that
condenses the liquid then when injected into ambient air. Laskin nozzle generators
operate using one or more nozzles and create aerosols with a specific particle size
distribution when operated at correct temperature and pressure [14]. Alumina, Carbon
Black, Arizona Road Dust, and Potassium Chloride (KCl) are dry powders and have been
used in testing of HEPA filters. Dry aerosols are generated using a powder feeder with
compressed air and then injected into the test air stream. KCI and other soluble
compounds or slurries can be used to produce aerosols via a spray dry process. Aerosols
of varying particle diameters have been used to show the effects of particle size on
surface and depth loading and loading capacity. Figure 1 shows the particle size
distributions for three aerosols produced from dry powders during testing at ICET [15].
Equations in the aerosol statistics section on page 22 are used to describe the log normal

distributions as shown in Figure 1.
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Figure 1 Dry powder aerosol particle size distribution from previous ICET testing

Table 1 gives the aerosol statistics for this set of data [15].

Table 1 Dry Powder Aerosol Particle Statistics from Previous ICET Testing

Upstream
Aerosol Number CMD GSD MMD
Concentration
Alumina 650,000 #/cc 0.185 um 2.17 | 0.8 um
AZ Road Dust 100,000 #/cc 0.186 um 1.86 | 5 um
Carbon Black 450,000 #/cc 0.250 pm 221 | 1.2 um

The lognormal distribution of an aerosol produced by spray drying a saturated

solution of potassium chloride (KCl) is provided in Figure 2.
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Figure 2 Lognormal particle size distribution of potassium chloride.

The aerosol statistics for the lognormal distribution given in Figure 2 is shown in

Table 2. These statistics display the numerical values for the distribution above.

Table 2 Aerosol Statistics for Potassium Chloride

Potassium Chloride Aerosol Statistics
Median(nm) 205
Mean(nm) 249
Geo. Mean(nm) 197
Mode(nm) 211
Geo. Std. Dev. 1.64
Mass Median Diameter 431
Mass Mean Diameter 487
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Aerosol measurement instrumentation

The measurement of aerosol particles for HEPA filter qualification has been
changed over the years due to advancements in methods and instrumentation. Instruments
can be categorized into two groups. (1) Collection devices such as cascade impactors,
Aitken-type condensation nuclei counters, or filter samplers and (2) real-time, direct-
reading instruments, such as an optical particle counters, photoelectric condensation
nuclei counters or photometers [10].

The origin of aerosol measurement dates back to before 1900. This is referred to
as the preclassical period of aerosol measurement [10]. John Aitken’s preclassical
research on condensation in 1875 led to the development of the first portable instruments
for counting dust particles [10]. In 1941 the first observations of what later became
known as condensation nuclei methodology was observed. It was recognized that
condensation occurred on unfiltered air quicker than it formed in filtered air. Thirty years
later the experiments of P.J. Coulier demonstrated that condensation was enhanced due to
the existence of fine particles in the air.

The classical period of aerosol measurement is identified by the use of
measurements and experimental techniques after the preclassical period and prior to the
use of lasers, computers, and spectroscopic analytical tools. Aerosol measurement
instrumentation during the classical period described aerosol populations by number
concentration. Number concentration methods during this period required a volume of
sample to be collected followed by counting and sizing the particles. The detection of
particles by scattering of light led to the invention of the tyndallometer, nephelometer,
ultramicroscope, and John Tyndall’s optical particle counter by the 1960s [10]
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Examples of classical measurement instruments include: Konimeters, Cascading
impactors, Impingers, and Precipitators. Konimeters are single stage impactors. Particles
are collected on a glass plate by impaction and their physical size/description is examined
under a microscope. Cascading impactors utilize multiple stages to allow sampling and
sizing of aerosol particles. Cascade impactors of up to 6 stages were built before 1960
during the classical period of aerosol measurement. For cascading impactors stages are
designed to capture a faction of the aerosol with smaller average diameters collected on
succeeding impactor stages. Impingers use the same technique as Konimeters except the
dust particles are first collided with a liquid. Classical measurement instrumentation
utilizing impaction methods are time consuming, have poor size resolution, no real-time
analysis of particle size distribution, and errors originating from particle bounce [10].
Precipitators utilize thermal and electric fields to separate aerosol particles [10].
Precipitators of the classical period were shown to have a lack of homogeneity in particle
deposition obtained during dust sampling. In samples obtained in thermal precipitator, the
average particle size increases continuously from the front edge to the back edge of the
collection plate as a result of thermophoresis [10]. Precipitators have also been found to
have decreased collection efficiency as particle size increases above 2 um [10].

Classical measurement methods are limited due to errors associated with each
measurement technique. Differences in different instrument measurements were found to
be in the range of +£100%, therefore, it is impossible to compare measurements from
different instruments of this era [10].

The impactor is the most extensively used aerosol measurement instrument for

characterizing particle size distributions. Ken May is responsible the first true cascade
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impactor for determining a particle size distribution [16]. Three areas of impactor
development have stood out: (1) extending the cut sizes of impactor size ranges, (2)
development of impactors to provide near real-time indication of the particle mass
collected, and (3) designing impactors that provide precise particle size characterization
for medical and aerosol inhalers [16].

The emergence of microelectronics, laser and computer techniques, modern
physical methods in analytical chemistry, analytical electron microscopy, and light
scattering technology revolutionized aerosol measurement instrumentation. Unlike the
instruments used before 1960, newer instruments are able to incorporate computers and
automation to collect and analyze data. Commercial development of currently available
instrumentation along with their calibration technologies has dramatically increased the

consistency of aerosol measurements [10].

Aerosol statistics

Gravitational settling is not commonly view as a filtration mechanism even
though it does represent a removal mechanism. However, gravitational settling has a
broader impact on air filtration nomenclature than may be apparent. Particle sizes can be
classified or described in a variety of physical ways. Irregular sizes make measurements
such as physical diameter, aspect ratio or volume difficult to correlate to the behavior of
an aerosol particle.

The most popular description is that of aerodynamic diameter. The aerodynamic
diameter of a particle is said to be equivalent to the diameter of a spherical droplet of unit
density with the same settling velocity [7]. The Stokes diameter is another common way

to size aerosol particles. The Stokes diameter is equivalent to the diameter of a spherical
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aeroso of the same bulk density and settling velocity as the test particle [7]. Unless
otherwise stated, particle sizes will be given in aerodynamic diameters.

Particle size distribution curves provide a functional representation for analyzing
aerosol properties. Aerosol populations tend to follow a lognormal distribution of particle
sizes as opposed to a true normal distribution [7]. Particle size distributions provide
graphical representation of count fraction as a function of particle diameter. The most
commonly used quantities for describing statistical locations of a distribution are the
arithmetic mean, median, mode and the geometric mean. An aerosol population can
generally be described by its geometric mean, geometric standard deviation and number

of particle per cubic centimeter. An example of a particle size distribution is shown in

Figure 3
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Figure 3 Particle size distribution with mean, median, mode, mass median, mass

mean, and geometric mean labeled.
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The arithmetic mean is the sum of all the particles sizes divided by the number of
particles. The median diameter (CMD) is the size at which half the particles are larger
and half are smaller. The mode is the most frequent particle size and geometric mean is
the Nth root of the product of N values. The geometric mean diameter is shown in

Equation 20.

dg = (d1dyds .....dy)VV (20)
Geometric standard distribution (GSD) describes the spread of the particle sizes.

The equation for GSD is shown in Equation 21 below.

i(nd;-Indg)>*/?
lno-g = Zn(nl\c,lflndg) (21)

Normal distributions of polydisperse aerosols result in a skewed distribution
because of the long tail at large particle sizes [7]. This wide range of particle sizes skews
the distribution such that it requires a fraction of the particle sizes to have a negative
value to result in a true distribution. This is impossible.

Lognormal representation of aerosol data collected during testing has been found
to be much more useful than normal distributions. No fundamental theoretical reason has
been established as to why particle size data should approximate the lognormal
distribution, but it is routinely seen in experimental data [7]. The lognormal distribution
1s useful for describing aerosol size distributions because it fits the observed size
distributions reasonably well and its mathematical form is convenient for aerosol statistic
applications. The lognormal distribution is best used where the quantity must have a
positive value and the data range is greater than a factor of 10 [7]. A very narrow range of

particles causes the population to more closely follow a normal distribution. In a
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lognormal distribution the geometric mean diameter of the normal distribution is replaced
by the count median diameter. The mean and the median of a lognormal distribution are
equal and therefore the lognormal distribution is symmetrical.

The MMD is also displayed in Figure 3 and shows how significantly the larger
particle fraction of the PSD is emphasized. The filtration efficiency for HEPA filter
allows projection of mass loading to be the mathematical product of the particle number
density, MMD, bulk density of the aerosol, volumetric flow rate and time.

Particle size distributions can also be described based on mass as opposed to
particle counts. One mass distribution value is of particular usefulness, the mass mean
diameter (MMD). This value is often employed in filter loading computations because of
its simplicity of applications. The MMD is also displayed in Figure 3 and shows how
significantly the larger particle fraction of the PSD is emphasized. The filtration
efficiency for HEPA filter allows projection of mass loading to be the mathematical
product of the particle number density, MMD, bulk density of the aerosol, volumetric

flow rate and time.
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CHAPTER III

NUCLEAR CONTAINMENT VENTILATION

Nuclear HEPA filter standards

High Efficiency Particulate Air (HEPA) filters currently play a major role in
safety and ventilation systems for nuclear facilities. HEPA filters are required to perform
reliably under a multitude of conditions. Many experiments and studies have been
conducted over the last 70 years to ensure the performance of these filters. Nuclear grade
HEPA filters are required to meet specific standards and use must follow guidance
documents established by governing bodies such as the US DOE and NRC. Examples
include: the DOE Nuclear Air Cleaning Handbook (NACH) and the Nuclear Quality
Assurance standard (NQA-1) maintained by the American Society of Mechanical
Engineers (ASME) [1,17]. These documents provide quality control for application of
standards. The standard for design, fabrication, and qualification of nuclear grade HEPA
filters is ASME AG-1 Code on Nuclear Air and Gas Treatment [2].

Development of guidance and control documents began in the 1950s shortly after
the need for nuclear grade HEPA filtration and quality control was realized. The
requirement for having to qualify HEPA filters came about because of allegations in the
late 1950s that commercial filter manufactures were sending defective filters to facilities
[1]. The AEC responded by publishing strict quality assurance (QA) requirements for this

categories of filters. Filters manufactured prior to 1960 were found to have a rejection
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rate of 49% when tested at the Army Chemical Center in Edgewood, Maryland [1]. The
AEC established and used three QA testing facilities for inspection and testing of filters
used within the weapons complex, (1) Oak Ridge National Laboratory in Oak Ridge,
Tennessee, and (2) Rocky Flats plant in Golden, Colorado and the (3) Hanford facility at
Richland, Washington [1]. Establishment of AEC QA filter test stations functionally
enforced the requirement for quality control on filter manufactures to implement their
own quality assurance practices [1]. Filter rejection rates dropped to 5% during the period
of 1960-1968 as a result of filter quality assurance testing [1]

Efforts in the United States during the 1960s focused on standardizing
manufacturing and test criteria for filter media (called paper) and fabricated filters, with a
special emphasis on fire and water resistance [1]. Filters are required to meet standard
qualification requirements in order to demonstrate that filter designs have been produced
using allowed high-quality components and carefully assembled to meet performance
requirements. Discussion sessions held during the 1960s included issues ranging from
aging of fibrous glass media in filters to the integrity of shipping containers [1]. The
aging of glass filters became an important topic because of the quantity of filters that had
been sitting in storage or remaining in service for an extended period of time [18]. This
issue is still being discussed as the service life of a fibrous glass HEPA filter. Aging of
filters had not been discussed in length before the discussion sessions during the 1960s
[1]. The inclusion of a non-mandatory appendix for Section FC of AG-1 is currently in

the balloting process.
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Substandard filtration system performance led to an additional phase of testing, in
place testing of all filter installations, this has resulted in improved designs for filter
housings and installation guidelines [1].

The next step in providing guidance and standardizing development of overall
system design and performance was taken when the Oak Ridge National Lab published
1966 ORNL/NSIC-13, Filters Sorbets and Air Cleaning Systems as Engineered
Safeguards in Nuclear Installations in 1966 [1]. ORNL/NSIC-13 would later become
known as the 1% edition of the Nuclear Air Cleaning Handbook. The first edition of the
NACH presented the latest developments in the trapping of airborne radioactive materials
encountered in reactor operations, fuel fabrication and processing plants and
radiochemical plants of all types [1]. The purpose of presenting this information was to
increase containment reliability under adverse conditions, as well as lowering costs and
increasing capture efficiencies for radioactive aerosols and gases [1]. The AEC was
replaced by the Energy Research and Development Administration (ERDA) in 1975 to
focus the federal government’s energy research development activities under a single
agency, this action included AEC’s nuclear energy defense activities. [DOE.gov]

The American National Standards Institute (ANSI) assigned the overall
responsibility for coordination among technical societies and development and the
maintenance of nuclear power quality assurance standards to ASME in 1975 [17]. ASME
established an organizational structure to accomplish this that is currently housed under
the ASME Board on Nuclear Codes and Standards (BNCS). ASME BNCS currently

maintains the following committees responsible for codes:
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6.

7.

Committee on Nuclear Quality Assurance (NQA)

Committee on Cranes for Nuclear Facilites (CNF)

Committee on Operation and Maintenance (O&M)

Committee on Nuclear Air and Gas Treatment (CONGAT)

Committee on Qualification of Mechanical Equipment Used in Nuclear
Power Plants

Committee on Nuclear Risk Management (CNRM)

Boiler and Pressure Vessels Committees (Nuclear)

ASME established the Committee on Nuclear Quality Assurance and began

operation under the ASME Procedures for Nuclear Projects on October 3, 1975 [17]. The

Committee on Nuclear Quality Assurance established a series of documents for quality

assurance at nuclear power facilities [1]. The purpose of these standards was to reflect

industry experience and current understanding of the quality assurance requirements

necessary to achieve safe, reliable and efficient utilization of nuclear energy and

management and processing of radioactive materials [17] Difficulties experienced during

application of this set of standards resulted in their combination into the single, multipart

document labeled as NQA-1-1994. The latest edition of NQA-1 was published in 2012

[17]. The NQA standard provides requirements that prescribe the extent of controls

needed in specific areas of a nuclear quality program [17]. The 18 requirements outlined

in NQA-1 are shown below [17].

Organization
Quality Assurance Program

Design Control
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e Procurement document control

e Instructions, procedures and drawings

e Document control

e Control of purchased material, equipment and services

e Identification and control of materials parts and services

e Control of special processes

e Inspection

e Test control

e Control of measuring and test equipment

e Handling, storage, and operating status

¢ Nonconforming items

e Corrective action

e Quality assurance records

e audits

The ASME Committee on Nuclear Air and Gas Treatment (CONGAT) was

formed in 1976 to help meet industry needs for nuclear air and gas containment.
CONGAT created and maintains four codes and standards that dictate requirements of
nuclear air and gas treatment. The four CONGAT codes are: ASME AG-1 - Code on
Nuclear Air and Gas Treatment [2], ASME N509 - Nuclear Power Plant Air Cleaning
Units and Components [19], ASME N510 - Testing of Nuclear Air Treatment Systems
[20], and ASME N511 - In-service Testing of Nuclear Air Treatment Systems [21]. DOE
Technical Standard DOE-STD-3020-97 Specification for HEPA Filters Used by DOE

Contractors was issued by the DOE in 1997 [22].
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DOE-STD-3020-97 was developed to provide guidance to DOE contractors for
procurement and included the required testing of HEPA filters used in DOE nuclear
facilities. The purpose of DOE 3020 is to achieve technical coordination among
individuals of recognized authority from affected DOE programs, including
manufacturers, purchasers, users, and technical experts [22]. DOE 3020 is currently
undergoing revision and updating.

The U.S. DOE initiated a program in the early 1990s to more precisely define
HEPA filter efficiency [1]. Filter efficiency studies conducted at Los Alamos National
Laboratory showed that the most penetrating particle size for all-glass-paper HEPA filters
at the design airflow is close to 0.1 um [1]. Development and acceptance of a new HEPA
filter standard that utilized a polydisperse aerosol to determine filtering efficiency
resulted from determination of the MPPS [2]. DOE filter test facilities (FTF) at Rocky
Flats, Oak Ridge and Hanford improved the characteristics of aerosols for HEPA testing
to yield more consistent results [1]. All filters used at DOE facilities were required to be
tested at a FTF before installation. Rocky Flats and Hanford were closed by 1992 with
operations consolidated at the Oak Ridge National Lab K-25 facility. Closure of the
ORNC facility in 2005 included transfer of FTF activities to ATI in Baltimore, Maryland
[23].

DOE research on filters existed not only at Los Alamos National Laboratory
(LANL) but also at Lawrence Livermore National Laboratory (LLNC). Work by Vern
Bergman included development of filters capable of performing under much more
aggressive conditions than fibrous glass media can withstand. Dr. Bergman’s research in

metal media filters is particularly important to section FI development [31].
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Overview of AG-1

The DOE NACH dictates that nuclear grade HEPA filters in the U.S. must meet

the requirements of ASME AG-1. The AG-1 code contains mandatory requirements,

specific prohibitions and non-mandatory guidance for material, design, fabrication,

inspection, testing, and certification for nuclear containment systems. [2]. AG-1 also

provides unbiased performance criteria to ensure products meet design qualifications

regardless of designer or manufacturer [2].ASME is the required code for the United

States nuclear industry and has been used internationally.[24]

AG-1 contains two approved sections associated with nuclear grade HEPA filters,

sections FC and FK. The following table lists the current and in development sections of

AG-1 associated with filtration [2]. Table 3 lists the sections of AG-1 with their name,

subject and status [2].

Table 3 Sections of AG-1

AG-1 Section

Name Subject Status
FA Moisture Seperators Final
FB Medium Efficiency Filters Final
FC HEPA Filters Final
FD Type II Adsorber Cells Final
FE Type 11 Adsorber Cells Final
FF Adsorbent Media Final
FG Mounting Frames for Air Cleaning Final
FH Other Adsorbers Final
FI1 Metal Media In-Development
FJ Low Efficiency Filters Final
FK Special HEPA filters Final
FL Deep Bed Sand Filters Final
FM High Strength HEPA Filters In-Development
FO Ceramic Filters In-Development
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Section FC

Section FC serves as the blueprint for development of new sections of AG-1.

Section FK was added to AG-1 and there are currently three sections listed in the above

table listed as in development. Sections in development contain many similarities to

Section FC. Many of the basics have remained the same but many specific parameters

have been changed out of necessity from the difference in the filter behavior. Differences

include:

e Intial differential pressure

e Maximum media velocity

¢ Qualification procedures, particularly with respect to differential pressures

e Qualification infrastructure

e Acrosol Challenge

The table below shows what section FC has required for nuclear HEPA filters.

Table 4 Section FC HEPA Filters
Section Title Subsection [Title Description
FC-1000 |Introduction |[FC-1100 |Introduction Purpose and limitations of
section FC
FC-2000 |Referenced
Documents
FC-3000 |Materials FC-3100 |Allowable Defines allowable materials
Materials for FC HEPA filters
FC-3200 [Special Materials can be used if
Limitations of  jacceptable by the qualification
Materials and design requirements in
FC-5000 and FC-4100
FC-4000 |Design FC-4100 |General Design |Design requirements including
specifications for splices and
patches, filter case, filter pack,
gaskets, separators, and
faceguards.
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Table 4. Continued.

FC-4200 |Performance Test aerosol penetration and
Requirements resistance to airflow
FC-4300 [Seismic Requirement of seismic
Qualification qualification
FC-5000 |Inspection FC-5100 |Qualification Resistance to airflow, test
Testing acrosol penetration, resistance
to rough handling, resistance
to pressure, resistance to
heated air, and structural
requirements.
FC-5200 [Inspection Visual examination of filters
FC-5300 |[Production Filters manufactured for
Testing delivery shall be tested for
penetration and resistance to
airflow.
FC-6000 |Fabrication FC-6100 |General States the filters shall be
Requirements assembled in accordance to
FC-3100, FC-4000, FC-5100,
and FC-5300
FC-6200 |Manufacture and [Specific values for tolerances
Assembly in construction and media
installation
FC-6300 |[Workmanship Filters must be free of foreign
matter and damage.
FC-7000 |Packaging, Shipping and storage to be in
Shipping, and accordance to AG-1 AA-7000
Storage
FC-8000  |Quality FC-8100 [Responsibility
Assurance
FC-8200 |Certificate of
Conformance
FC-9000 |Name Plates [FC-9100 |Filter Marking
FC-9200 |Package Marking
Mandatory [Filter Media: supersedes MIL-F-51079D
Appendix |Fire-Resistant
FC-1 High
Efficiency
Non Division of Identifies the roles normally
Mandatory [Responsibility assumed by the organizations
Appendix responsible for fulfilling Code
FC-A requirements.
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HEPA Filter design qualification testing for nuclear services outlined in the DOE
Nuclear Air Cleaning Handbook includes: Penetration (Efficiency) testing, Airflow
resistance test, tests aerosol test, resistance to rough handling qualification test, moisture
and over pressure resistance qualification test, fire and hot air resistance qualification test,
and spot flame resistance [1].

Section FC is the oldest and by far the most mature section related to nuclear
grade HEPA filters and has been the primary focus of the filtration subcommittee. Newer
sections describing HEPA filters have been greatly influenced by design characteristics
of existing filtration systems that employ FC filters. This includes a clean differential
pressure of 1.0 or 1.3 inches w.c. for filters. There has also been a maximum media
velocity of five feet per minute used to insure that Reynolds numbers retain a laminar
flow regime. Project teams responsible for developing new sections also face limitations
that exist in qualifying filters of differing geometries or performance capabilities.
Development of Section FI for metal media nuclear grade HEPA filters has reached an
impasse restricting the progress until infrastructure is available to collect needed data and
also provide capacity to qualify filters. The infrastructure located at Edgewood will not
accommodate geometries or test conditions exceeding these of section FC filters. Project
teams developing code sections that exceed existing qualification infrastructure must also

deal with how and where needed infrastructure can be developed.

Defense Nuclear Facilities Safety Board documents

The Defense Nuclear Facilities Safety Board (DNFSB) is an independent
organization started in 1989 with the responsibility of providing recommendations and

advice to the President and Secretary of Energy regarding public health and safety issues
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at DOE defense nuclear facilities [25]. The goal of the DNFSB is protecting general
public and worker health, safety and environment at defense nuclear facilities [25].

The DNFSB identified potential significant weaknesses in the maintenance and
operation of nuclear containment ventilation systems. Weaknesses in the procurement,
testing, application and use of HEPA filters were specifically recognized. These issues
were attributed to degrading DOE infrastructure for HEPA filters and from the lack of
reliance on FTFs. The DNFSB released Technical Report 23 (Tech 23) entitled HEPA
Filters Used in the Department of Energy’s Hazardous Facilities in May of 1999 to
identify actions to restore the necessary infrastructure [26].

Tech 23 focused on five failure issues. The first issue is fire. Fires pose a potential
safety issue for containment systems in nuclear applications by production of smoke can
rapidly blind filters and cause physical failure. One example is the fire that occurred in
building 776-777 at the Rocky Flats Plant in Golden, Colorado in May 1969. This fire
was reported to have produced large amounts of contaminated smoke. Some filters were
reported to be burned or damaged by heat and air pressure. Although most of the
ventilation systems continued to operate, the vulnerability of fibrous glass HEPA filters
to fires was apparent [27]. Tech 23 called for development of strategies to prevent
destruction of HEPA filters [26]. The DNFSB report addressed heat and elevated
conditions that can pose a threat to the proper functioning due to the materials of
construction of the HEPA filter installations [26]. A third area addressed is the material
of construction.

HEPA filter medium is manufactured in a manner similar to that of making paper.

The similarity of manufacturing along with historical use of cellulose in addition to
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fibrous glass caused HEPA media to also be referred to as paper. Use of this term
included the implicit understanding that media are susceptible to water damage even with
water repellent media. Moisture-laden air carried through a HEPA filters can seriously
degrade filter performance [26]. The fourth concern a Tech 23 addressed is that the
strength of HEPA media under challenging conditions can pose a threat to the integrity of
the filter [26]. Determining the extent of the threat to the integrity of the filter is difficulty
since nondestructive in-place testing is not available for these HEPA filtration systems
[26]. The fifth and final concern addressed in tech 23 is air leaks [26]. Even with careful
design, attentive operation and disciplined maintenance the operation of a HEPA
installation can be diminished by air leaks in the negative pressure region of the system
downstream of the filters and upstream of the fans [26]. Leaking gaskets, fan seals, and
damper actuator penetrations are particularly vulnerable. These regions are not regularly
checked for leaks and can cause problems if they are not discovered and addressed
immediately [26].

The Defense Nuclear Facilities Safety Board issued several recommendations on
March 8, 2000 to assist in resolving issues discussed in Tech 23. Recommendations to
resolve some issues discussed in Tech 23 were listed in DNFSB Recommendation 2000-
2. The first recommendation was to establish a team of experts in confinement ventilation
systems to examine the past and present operational condition of all confinement
ventilation systems [28]. This included assessing the causes for the less than satisfactory
operational history of critical safety systems and an action plan to address the causes and
estimating the remaining system lifetime with and without refurbishing [28]. When
assessment of the causes is complete the team was called to recommend upgrades or
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compensating measures to ensure reliability of the safety systems [28]. Recommendation
2000-2 also included recommending the development and maintenance of documentation
that captures key design features, specifications, and operational constraints to facilitate
configuration management throughout the life cycle of the facility [28]. This requires
designation of a system engineer during each facility life cycle-design, construction,
operation, and decommissioning as well as education and training of successor system
engineers due to changes in contractor organizational changes, facility life cycle change
or other causes for reassignments [28]. This recommendation also tasked the Federal
Technical Capability Panel to establish necessary staff and expertise required for
operation of confinement systems [28].

In October 2000 the DNFSB issued a implementation plan for Recommendation
2000-2. The implementation plan set the objective of completing a baseline assessment of
the operation readiness of vital safety systems. This plan also addressed actions to

identify and compensate for degradation to vital safety systems [29].

Section FI development

Development of a new filter standard for metal media HEPA filters began around
1990. Development of a standard for high strength media focused on two high strength
mediums with most moisture resistance that can be used for HEPA filters: sintered metal
powder and sintered metal fiber media. Development of this section came to almost a
stand still until the release of DNFSB document Tech 23. Proposed Section FI addressing
metal media filters will be applicable to the full range of filtering efficiencies, including
HEPA [30]. Therefore, the major barriers to completing the code section is development

of a test stand for collecting data necessary to specify performance requirements for use
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and for filter qualification [30]. Differences in metal media filters require section FI to
cover a very broad range of performance criteria [30].

Section FI represents a substantive change from the traditions represented by
Section FC. Section FC filters tend to be standardized with respect to dimensions and
rated flows along with infrastructure required to qualify them. FI allows for user defined
parameters including material of construction, initial and maximum differential pressures,
operating temperature range, and chemical resistance. Additionally, the geometry of
elements and the variably of filtering efficiencies and test conditions require a completely
new suite of testing infrastructure to qualify them. Metal media filters addressed in
section FI have been shown to exhibit efficiencies as high as 0.9999999 for specific test
conditions [31].

Sintered metal fiber and sintered metal powder media are both being evaluated for
Section FI qualification. Sintered fiber filters consist of very thin metal filaments
uniformly laid to form a three-dimensional non-woven structure sintered at contact points
[32]. The sintered metal powder is manufactured by pressing metal powder into porous
sheet or tubes, followed by high temperature sintering [32].

Metal media filters can be back pulsed with compressed air to dislodge surface
particulate matter, extending the life of the filter [33]. Sintered metal fiber and powder
media are viable options for HEPA filtration. Sintered fiber and powder filter elements
have strength and durability that exceeds that of fibrous glass, but because of the higher
porosity of the sintered fiber the initial pressure drop of a clean sintered fiber filter has a
much lower pressure drop than the pressure drop for a clean sintered powder filter [34].
Sintered metal fiber media also typically has a higher holding capacity than the sintered
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metal powder and consequently the life expectancy is longer [35]. Both types of metal
media filters are more expensive than their glass fiber counterparts, however their
enhanced chemical and physical properties or ability to be regenerated (cleaned) in-place
make a suitable and cost effective choice in many applications [36].

Development of Section FI for metal media filters of the ASME AG-1 standard
has been ongoing since the late 1990s [30]. A multitude of issues has plagued finalizing
this standard. The problematic issues have been rooted in the dramatic differences
between metal media and fibrous glass media. HEPA filters used in nuclear containment
applications have virtually always utilized fibrous glass media. The fibrous glass media
limits the conditions in which HEPA filters can be operated: (1) Excessive moisture must
be avoided; (2) back pulsing cleaning cannot be used to regenerate conventional FC
filters; (3) the tensile strength of fibrous glass media restricts maximum operating
differential pressures; (4) fibrous glass media can be degraded by chemical constituents
like high pH aerosols or HF; and (5) potting materials for fibrous glass filters have
relatively low tolerance for elevated temperatures [2]. Metal media filters have
capabilities to with stand conditions that limit classic glass HEPA filters due to materials
of construction [30].

The specific performance requirements for fibrous glass media are laid out in
detail in AG-1 [2]. Metal media filters have a drastic difference in behavior of FC filters
and thus many of the specifications that are applied to glass HEPA filters are not
necessary for metal media filters. Many of the performance requirements for section FI

filters are user defined, unlike sections FC and FK of AG-1 [2]. Table 5 gives the
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parameters that must be supplied by the owner in the operation design criteria for metal

media and metal media HEPA filters.

Table 5 Section FI user Defined Design Parameters.
Dimensions Length, width, depth, maximum mass
Operating Conditions Temperature and pressure range

[nitial and max AP
Relative humidity range
Media velocity (min, max)
Volumetric flow (min, max)
Chemical Composition of Aerosols
Particle Size Distribution of Aerosols (GMD and GSD)
Mass or Number Concentration of Aerosols
Corrosive gases and/or liquids
Materials of Construction |Gasket material
Filter media material
Adhesive material
Filter housing material
Mounting frame/housing  |Allowable materials (corrosion resistance, durability)
Structural requirements
-deflection limits
-impact loading
-stress limits
-equipment design verification

Access Filter housing, filter element
Location of filter
Filter medium Filtering efficiency

Unique challenge conditions (NOx, HCI, etc)

Differences in the operating envelope and allowing the user defined operational
limit requires a completely new suite of qualification and testing infrastructure [37].

A set of standardized qualification tests give reasonable assurance that filters have
been produced using good designs, high-quality components, and carefully assembly in
accordance with exacting tolerances [1]. Standard qualification test results give an

indication of the operating envelope of the filter rather than the actual filter efficiency
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under unknown or ill-defined operating conditions. HEPA filters for nuclear service
undergo a qualification procedure and two testing regimens [2]. The first regimen
consists of a stringent visual examination and penetration tests at the manufacturer [2].
The second regimen is an in-place leak test performed at the facility it is used [2]. DOE
requires independent inspection and penetration tests at the designated DOE FTF prior to
installation at its final destination [1]. The manufacturer’s testing regimen involves two
distinct phases: (1) a quality control routine to ensure careful manufacture of the product
and (2) a serious of tests to verify filter compliance with standards and performance
criteria related to collection efficiency and resistance to airflow [2]. The DOE mandates
independent inspection and penetration testing for all filters purchased [1]. Testing is
currently required for filters installed in radiological hazard Category 1 and 2 facilities
that perform a safety function and a statistical approach for the balance [1]. Filters are
tested for compliance with the requirements for physical characteristics, efficiency and
airflow resistance [2]. Compliance testing is conducted at the DOE-supported FTF before

the filters are released to the customer’s facility [1].
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Table 6

Current Sub-Sections of Section FI [2]

Section Title Subsections Subsection Title
FI-1000 Introduction FI-1100 Scope
Referenced
FI-2000 Documents None
FI-3000 Materials FI-3100 Allowable Materials
Special Limitations of
FI-3200 Materials
FI-3300 Alternate Materials
FI-4000 Design FI-4100 General Design
Performance
FI-4200 Requirements
FI-4300 Seismic Qualifications
FI-5000 Inspection FI-5100 Qualification Testing
FI-5200 Inspection
FI-5300 Production Testing
FI-6000 Fabrication FI-6100 General
FI-6200 Fabrication and Assembly
FI-6300 Workmanship
Packing, Shipping,
Receiving, Storage,
FI-7000 and Handling None
FI-8000 Quality Assurance | FI-8100 Responsibility
Certificate of
FI-8200 Conformance
FI-9000 Name Plates FI-9100 Filter Marking
FI-9200 Package Marking

The current draft of section FI contains subsections of FI-5100 for qualification

testing that includes qualification procedures listed below [37]. Qualification

requirements have been developed using section FC as a basis and creating unique

requirements to section FI because of the uniqueness of the metal media filters.

Resistance to Air flow. FI-5110 addresses the resistance to air flow at the

rated airflow of the clean filter. For metal media HEPA filters intended to
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serve as a direct replacement for Section FC filters in existing systems, the
resistance to airflow of the clean filter shall meet the requirements of the
Tables FI-4121-1 or FI-4131-2 or FI-4131-3 or FI-4132-1 when tested in
accordance with FI-5122.

Test Aerosol Penetration-FI-5120 addresses testing metal media filter
elements for penetration of aerosols. Metal media filter elements will be
tested for resistance to airflow and aerosol penetration using procedures
contained in existing consensus standards and will employ a test stand
capable of producing the differential pressures called for by
owner/operator specifications

Resistance to Rough Handling. FI-5130 addresses the durability of filters
when exposed to rough handling that could be encountered in shipping
and moving the filters in and out of storage.

Resistance to Pressure-FI1-5140 addresses the ability of the filter to
withstand extreme pressures that the filter elements could be exposed to
during emergency conditions.

Resistance to Heated Air-FI-5150 addresses the ability of the filter
elements to with stand high temperatures

Spot Flame Resistance-FI-5160 addresses the flammability of the filter
media by exposing it to a flame from a Bunsen burner.

Structural Requirements-FI-5170 specifies that the filters must be

evaluated for structural damage.
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e Cyclic Testing of Cleanable Filter Designs-FI-5180 address the testing of
the cleaning of filters that are intended to be cleaned and reused
repeatedly.

The qualification tests outlined above require numerous sets of data to be
collected. Some data can be collected simultaneously while other data must be tested
separately. Testing with positive pressure air flow for resistance to airflow and test
aerosol penetration can be collected simultaneously. Flow rates, up and downstream
aerosol concentrations, differential pressure across filter elements, relative humidity, and
temperature can all be monitored during resistance to airflow and test aerosol penetration
tests. Resistance to elevated pressures will involve using a viscous liquid in a small scale
test stand to challenge the filter element to elevated pressures. The differential pressure
across the filter must be continuously monitored and recorded. The resistance to heated
air involves inserting the filter elements into a specialized small scale test stand and using
electric or combustion air heaters to heat the air flow to 750 degrees F [37]. During this
testing temperature and differential pressure across the filter is recorded. Cyclic testing of
cleanable filter designs requires the filters to be loaded and back pulsed to clear filter
cake repeatedly. Aerosol concentrations, loading rates and testing conditions are
continuously monitored during this testing. Resistance to rough handling will involve
testing the filter on a rough handling machine for 15 min at % inch amplitude and 200
cycles per minute [37]. For testing of spot flame resistance the metal media pack is
required to be exposed to a gas flame from a Bunsen burner for a minimum of 5 minutes
[37]. Structural requirements for each filter involve examination for structural damage,

airflow and penetration resistance, leak testing, and tube sheet leak testing [37]. Each
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filter is to be visually inspected to show conformance to size specification and inspection
to verify that labels are properly located and indicate they been tested and meet required
flow rate, penetration and air flow resistance for metal media filters [37]. The testing
sequence should follow that put forth in drafts of section FM as opposed to section FC.
Each set of filter elements should undergo a sequence in which the filter set is passed
from test stage to test stage that is employed with a final FE determination. This is
expected to yield a more accurate representation of how the filter will function when

subjected to conditions outside normal operating conditions.

Balloting Section FI

Balloting of a new section to be added to AG-1 is an iterative process that
requires the proposed language undergo a series of reviews and panels. Consensus must
first be established within the project team. Proposed language is then reviewed and
balloted within the filtration subcommittee. Negative votes cast must be resolved before
re-balloting. Comments are addressed by the project team and provided to the committee
member. The approved draft is then sent to the Main Committee for review and
comment. The edited material is then reballoted and negatives resolved. Once the section
language has been approved by the main committee it is sent to the BNCS for review. It
can either be approved by the board or returned to the project team for modification. This
iterative process is commonly long and tedious. The code to be balloted must be based on

extensive supporting information to demonstrate that the new standard is sufficient.
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CHAPTER IV

TEST STAND DESIGN AND CONSTRUCTION

Test stand performance criteria

Section FI has gone through the balloting process twice and numerous
presentations have been made to the Main Committee. Incremental progress has been
made over the past ten years; however availability of testing/qualification infrastructure
has remained as the most critical issue preventing balloting. The FI project team has been
working with DOE-HQ and ICET to design and construct a research grade test stand that
can provide data and detailed information necessary for moving forward the process of
finalizing section F1. The remaining obstacle is the lack of physical testing capabilities
and testing procedures capable of addressing the wide range of user defined needs. The
rest of this paper discusses the design and construction of a research grade test stand that
is intended to help establish this infrastructure. Performance criteria for the test stand are

provided in Table 7.

45

www.manaraa.com



Table 7 Test stand performance criteria

Performance Criteria

Capactiy House up to three 8 foot long Filter Elements
Produce flow of 50-200 ACFM at pressures up to
Flow 15 PS|

Maintain conditions of 60-80 Degrees F, 40-60%

Testing conditions )
RH, up to 15 psig

Continuously measure and record static pressure,
Condition Measurement differential pressure, temperature, relative
humidity, and flow rate

Continuously measure and record particle
concentration and Size

High Temperature 120 ACFM at 750 degrees F
High Pressure Differential Pressure o f15 PSI

Particle Measurement

The Section FI Project team reviewed testing needs and determined the range of
test and qualification conditions necessary including dimensions necessary to test an
appropriate range of filter elements along with maximum volumetric flow and differential
pressure. This catalog of performance criteria were converted into a concept design

drawing by ICET personnel as shown in Figure 4.
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Figure 4 FI project team concept design for FI test stand

These drawings were modified by ICET and during meetings and conference calls
with the FI project team.

Traditional HEPA filter test stands utilize a negative pressure air flow. The FI test
stand utilizes positive pressure because of the high pressure drop associated with metal
media filters. The FI filters have higher initial differential pressure and are capable of
performing at differential pressures much higher than fibrous glass filters. To produce
differential pressure across the filters to extensively challenge these filters it is necessary
to utilize positive pressure. The use of positive pressure air flow in the FI test stand
required major design changes. Two major challenges from using positive pressure are
complications associated with aerosol generation and aerosol measurement
instrumentation.

The test stand design was reviewed and redesigned several times until the design

shown in Figure 5 was agreed upon.
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Section FI Filter Qualification/ Testing Apparatus

- Downstream Particle
Instrumentation Legend Measurement

- VolumetricFlowrate
T~ Temperature

EH - Relative Humidity
SP- Static Pressure

P - Differential Pressure

Aerosol Injection
Nozzle

Wenturi
T

Pressurs Reducer

Compressed Air Upstream Particle
Measurement
Figure 5 Drawing of test duct and housing with instrument locations marked

This test stand is capable of simultaneously testing up to three radial flow metal
media elements four inches in diameter and 2.6 feet (2 m) long. The design is flexible
enough to evaluate a wide range of parameters shown in Table 8 to produce data

necessary for section FI filter qualification.

Table 8 Capabilities of FI Test Stand

Actual Performance

Capactiy Can house up to three 8 foot long Filter Elements
Flow Can produce flow of 50-160 ACFM at pressures up to 10 PSI
Testing conditions (Can maintain conditions of 60-80 Degrees F, 40-60% RH, up
to 10 psig

ICan continuously measure and record static pressure,
differential pressure, temperature, relative humidity, and flow

Condition Measurement

rate
Particle Measurement Can continuously measure and record particle concentration
land Size
High Temperature Seperate test stand designed
High Pressure Separate test stand designed
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Design calculations
Hoop Stress

Hoop stress is used to calculate the permissible pressure allowed inside the
piping. The calculation for hoop stress determines the grade of piping used on the test
stand. For the design of the test stand the ICET Pressure Vessel and System Design
Standard was used as guidance. Equation 22 was used for this calculation where Sa is the
ultimate stress, E is joint efficiency, t is shell thickness, r; is the inner radius and SF is the

safety factor.

__ Sa(Ext)
" 2r;SF

(22)
The ultimate stress used for 304L stainless steel is 57,000 PSI, the joint efficiency
is 0.7, and SF is 4. The thickness changes with the diameter of piping used. For 12 inch
pipe the thickness is 0.375 inches and for 6 inch pipe the thickness is 0.28 inches. Using
these values the allowable pressure was found to be 623.5 PSI and 921 PSI for the 12 and

6 inch piping respectably. These values are well above the maximum expected operating

pressure for the test stand of 15 PSIG.

Shell Nozzles

ASME Section VII Division 1 UG-37 addresses reinforcements required for
openings in shells and formed heads. For openings in pressure vessel, the missing
supporting shell area must be replaced by an extension at the shell, nozzle or by a
reinforcement pad. Using Equation 19 rearrange and solve for thickness using 18
PSIGfor P with the values from the previous section. This value is the minimum required

thickness for the piping wall (t;). The minimum wall thickness is found to be 0.036
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inches. Using this thickness the required area (Ar) can be found using equation 23 where
d is the hole diameter, t; is the required shell thickness, and t; is the nozzle wall thickness.
The required area can be found using the minimum required thickness found using
Equation. 19 as t.. The actual wall thickness is 0.375 inches. Since t.>t; then A.>A, and

no additional thickness is required to be added to the pipe wall.

A, = dt, + 2t,t, (23)

Pipe and Flange Selection

Piping for the test stand is required to handle a maximum of 15 PSIG and 750° F.
ANSI/ASME B 31.1 for stainless steel piping shows 6 inch schedule 40 stainless steel
pipe to be rated to withstand a pressure of 724 PSIGat 750° F. The housing of the test
stand is constructed of 12 inch schedule 40 stainless steel piping. These values are well
above the required temperature and pressures at which the test stand will be operated.
According to ANSI B16.5 flange pressure class of 300 Ib will be sufficient for the

prescribed conditions in the test stand.

Weight

The large size of the test housing requires that the weight of the housing be
determined to ensure that the supports for the test stand will be able to withstand the load
without failing. The weight of the housing was calculated to be 1700 1b. Equation 24 was

used to determine the weight of the test stand.

Weight = Densitygiee; X Volumegee (24)
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Test Stand Base

The test stand base was design to be able to hold the weight of the test stand as
well as provide lateral stability. Calculations were required to assure that the test stand
would not collapse once it was assembled. These calculations involved using the material
properties as well as geometry of the legs of the test stand to calculate the maximum load
capacity. For this calculation only the four vertical support legs were considered.
Equation 25 was used to calculate the predicted stress applied to the vertical supports of

the test stand.

o = Force (25)

Area

For the legs on the test stand 3 x %4 inch angle iron was used this resulted in a area
of 0.5 ft* of total area for the legs. Using the weight and the cross sectional area of the
legs the stress in the supporting members was found to be 3400 Ib/ft>. The yield strength
of ASTM A36 is 5x10° Ib/ft>. This demonstrates that the legs are designed to with stand
much more than the highest expected load.

The horizontal stability of the test stand is provided by the diagonal legs. To
determine the horizontal stability of the test stand the equivalent force required to push
over the test stand will be calculated. Equation 26 was used to determine the required

force.

Weight x Width

Required Force = ,
Height

(26)

The width of the diagonal feet from the base is 3 feet. The height of the test stand

is 15 ft and the weight of the test stand housing is 1700 Ib. using these values the required
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force to topple the test stand is approximately 340 1b. This was determined by the ICET

safety officer to be sufficient to allow for the test stand to safely be operated.

Piping length
The length of the piping upstream and downstream of the test stand is dictated by

Reference Method 1 — Sample and Velocity Traverses for Stationary Sources [38].

Upstream Piping

For the 6 inch (15.24 cm) pipe used in fabrication of the test stand, the aerosol
sampling location upstream of the filter housing must be a minimum of 8 pipe diameters
or 4 feet (1.22 m) downstream of any flow disturbance such as a bend in the pipe, a
venturi, or point of aerosol injection. Likewise, this aerosol sampling location must be a
minimum of 10 pipe diameters or 5 feet (1.52 m) upstream of any flow disturbance such
as the filter housing [38]. Therefore the upper section of the test stand where sampling
will occur must be at minimum of 9 feet (2.75 m) long. Additional length has been added
to the upstream section to allow for multiple sampling ports. The test stand upstream of
the housing will consist of approximately 10 feet (3 m) of 6 inch (15.24 cm) stainless
steel piping, access ports, an air compressor, electric air heating bundle, volumetric flow
control valve, DOP Generator, flow control sensor, particle measurement

instrumentation, and air property measurement instrumentation.

Downstream Piping

As with the upstream sampling section of the test stand, the aerosol sampling
location downstream of the housing must be a minimum 8 pipe diameters downstream of

disturbances and 10 pipe diameters upstream of disturbances [38]. Therefore the aerosol
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sampling location downstream of the housing must be at least 4 feet (1.22 m)
downstream of the filter housing and 5 feet (1.52 m) upstream of any flow disturbance
such as a downstream venturi or pipe bend. The downstream measurement section of the
test stand must then be at least 9 feet (2.75 m) long. Additional length has been added to

the upstream section to allow for multiple sampling ports.

Pressure Drop

The pressure drop down the length of the 6 inch piping immediately before the

test stand housing was calculated using Equation 27.

L p*V?
D 2

Ploss = A (27)
The pressure loss in the upstream piping was found to be 0.91 PSI. The estimated

maximum differential pressure across the filters when loaded is 15 PSIG. These values

were used in the selection of the blower.

Flow Rate

The flow rate inside the test stand will be monitored using a venturi downstream
of the housing. Because of the expansion of the air through the filters due to the change
of pressure, change in flow rate from the upstream to the downstream sections will be
accounted for in the calculation of the upstream flow rate by using conservation of mass.
The following equations were used to determine the upstream flow rate [39]. The cross
sectional area of the downstream section of the pipe is different than the flow area of the

filter and thus the flow rate through the filter media must be calculated using the effective
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area of the filter. Equations 28-30 are the equations used to calculate the volumetric flow

rate.

mass;, = masSyyt (28)
Massfow = Volumetricyq,,, X Density (29)
Volumetricgq,,, = Velocity X Area (30)

The area is the cross sectional area of the section being calculated. The density is
the density of the air at the specified temperature and pressure and the velocity is found
using the downstream venturi. The venturi used is manufactured by Primary Flow Signal

and has a range of 50 to 375 CFM with an accuracy of +£0.50% of the actual reading.

Media Velocity

An important parameter in filtration is the media velocity through the filter. This
velocity is calculated by dividing the calculated media velocity by the effective area of
the media that is provided by the manufacturer. Several different media velocities will be

tested and these are shown in the results section.

Cooling and Heating for Relative Humidity Control

Conditions of air leaving the blower and entering the test stand will vary during
operation due to ambient conditions as well as from the duration of the testing. A cooling
then heating process is employed to create consistent conditions during the testing. A
water chiller provides a chilled fluid to the cold side of a fluid to air heat exchanger to
chill the air stream. An air to air heat exchanger utilizing warm air upstream of the heat
chilling heat exchanger is then used to reheat the air stream after the cooling heat

exchanger. This allows for testing conditions to be adjusted. To determine the capacity of
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the chiller and heat exchanger the heat transfer of a steady state open system with no
work for a cooling process was used as shown in Equation 31. The heat transfer of the
system must account for the change in temperature of the air stream (sensible heat) as
well as the energy required to condense water in the air stream (latent heat). Where mdota
is the mass flow rate of the air, h; is the enthalpy of the inlet air, h» is the enthalpy of the
exit air, hr is the latent heat of condensation, wi is the humidity ratio of the inlet air, w> is

the humidity ratio of the exit air and Q is the heat transfer rate.

Q = mgor[(hy —hy) + (wy —wy)hy] (31

The relative humidity (RH) will need to be maintained between 40% and 60% and
the temperature will need to be held between 60° F and 80° F for efficiency and loading
testing. The estimated required cooling capacity of the chiller upstream conditions was
calculated assuming 70% RH and 100° F. Airstream RH will reach 100% producing
condensation when the airstream is cooled to S0°F. The air can then be heated to 70°F at
which point the RH will be 50%.

Air temperature and relative humidity values can be used with an ASHRAE
psychometric chart to determine the enthalpy of the air. The enthalpy can then be used in
equation 31 to determine the cooling capacity required for the chiller. The required
cooling capacity was found to be 2.48 tons. The heating capacity of 0.34 tons for the heat
exchanger was found using the same equation and the ASHRAE psychometric chart

shown in Figure 6.
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Figure 6 ASHRAE Psychometric Chart No. 1

High Temperature

Resistance to high temperature testing requires filter media be heated to 750° F
(400° C) Air will be heated using existing air heaters with a total heating capacity of 63
tons. Using an energy balance the required inlet temperature can be determined.

Equations 33-36 were used to determine the temperature requirements of the inlet air[39].

Ein = Eout (33)
q = MmasSgowrate X Cp X (Tentrance — Texit) (34)
q — Tinsid;;;:nbient X Area (35)
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Rrotal = Rinconv + Rcondpipe T Rcondinsulation T Routconv (36)
The temperature drop through 23 feet (7 m) of pipe was found to be 6.3° F
(3.5°C). Air leaving the air heaters will need to be at least 758.3° (403.5°C) to reach the
target operating temperature of 750° F (400°C). The required heating load is 30,359

Watts.

Test stand and components

This section discusses the components of the test stand. Individual design
calculations for test stand components are provided in the calculations section. Appendix

C provides detailed drawings of the test stand components.

Piping
The upstream and downstream piping are 6 inch stainless steel piping. The
upstream and downstream piping contains several ports for sampling. Couplings on the

piping allow for readings of pressure, temperature, and relative humidity.

Flanges

300 1Ib flanges were used on the test stand to withstand design temperatures and

pressures of the test stand.

Length

The length of the piping for the downstream and upstream sections of piping was
determined using EPA Test Method 1 [ ].This method specifies the length (in pipe

diameters) from a flow disturbance to a sampling location.
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Housing

The test housing is designed to hold three 4 inch diameter radial flow metal media
elements 7 feet in length. It is constructed of 12 inch diameter Schedule 40 stainless steel
and capable of withstanding maximum test conditions of 15 PSIGand 750°F. The total
height of the test stand base and test section is 15 feet (4.6 m). The test section is
comprised of three units; a top section, the middle section with tubesheet to support the
filter elements, and a base. The overall mass of the upper two portions of the test section
is 1500 Ib and a chain hoist/jib crane is used to facilitate assembly/disassembly. A
procedure for assembly/disassembly of the test stand is provided in Appendix D.

The top section of the housing is 2 feet (0.61 m) long with an outlet port to the
downstream section of the test stand and a dome cap welded on the top. Couplings on the
top of the housing will allow for differential pressure and temperature across the filter
elements to be measured. The separate sections are connected together using 150 Ib class
flanges. The top of the housing is shown in Figure 7. The design drawing for this unit can

be seen in Appendix B.
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Figure 7 FI test stand Cap shown connected to middle section

The middle section of the housing is 8 feet (2.44 m) long to accept filter elements
up to 8 feet (2.44 m) long for testing. The middle section has numerous ports available
down the length of the section for sampling and visual examination of filter elements. In
the future these ports will be employed to evaluate the process of back pulse cleaning.
Couplings on the housing allow for differential pressure and temperature to be measured.

The middle section of the housing is shown in Figure 8. The design drawing for this unit

can be seen in Appendix B.

59

www.manharaa.com




Figure 8 FI test stand housing middle section

The base of the housing consists of a 3 feet (0.9 m) section with an inlet port
connected to the upstream piping, an additional port to allow for sampling, and a dome
cap and drainage port to capture bulk material cleared during back pulse cleaning of the
elements. The access port on the bottom of the housing provides access for cleaning.

Couplings on the bottom section allow for temperature and pressure readings. The base of
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the test stand is shown in Figure 9. The design drawing for the test stand base can be seen

in Appendix B.
Figure 9 FI test stand housing base section
Tube sheet

A tube sheet is used to support one or more filter elements. The tube sheet can be
fitted with a variety of coupling systems for attaching individual elements. An example
tube sheet is shown in Figure 10 with three elements attached by threaded fittings. Other
attachment options can include threaded nipples, compression fittings or even welding.
Tube sheets are also being developed to attach ceramic elements such as are covered by

section FO currently under development for evaluation in this test stand.

61

www.manharaa.com




The tube sheet is positioned between the top and middle section of the housing
between slip flanges. This allows the tube sheet to be rotated relative to the body of the
middle section for aligning elements with observations ports to view either a single
element or the space between elements. The tube sheet designed to hold the filter
elements in place inside the test stand housing can be seen in Figure 10. The design

drawing for example tube sheets can be seen in Appendix B.

Figure 10 FI test stand tube sheet with filter elements

The filter elements are stabilized on the tube sheet by attaching a spider ring on

the end of the filter elements opposite the tube sheet. A set of filter elements attached to
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the tube sheet with the spider ring for stabilization are shown ready for insertion into the

test stand housing in Figure 11.

Figure 11 Porvair sintered metal media Section FI HEPA filter elements attached to
the tubesheet

The tube sheet with the filter elements is secured inside the test stand with slip
flanges between the cap and middle section of the housing. Figure 12 shows the slip

flanges and location where the tube sheet is secured in the housing.
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Figure 12 Cap and middle section of FI test stand disassembled showing slip flanges

Support Structure

A structure is needed to support the weight of the housing for assembly and
disassembly because of the size of the test stand. The housing is located within the frame
of the structure equipped with a chain hoist to lift and move the housing. This structure
provides platforms for personnel to stand beside the upper and middle sections of the
assembled housing during testing. These platforms allow for access to ports on the sides
of the test stand. The support structure is shown in Figure 13 and design drawings are

provided in Appendix B.
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Figure 13 FI test stand and support structure

Piping

Upstream of Housing

For the 6 inch (15.24 cm) pipe used in fabrication of the test stand, the aerosol
sampling location upstream of the filter housing must be a minimum of 8 pipe diameters
or 4 feet (1.22 m) downstream of any flow disturbance such as a bend in the pipe, a
venturi, or point of aerosol injection. Likewise, this aerosol sampling location must be a
minimum of 10 pipe diameters or 5 feet (1.52 m) upstream of any flow disturbance such
as the filter housing.[15] Therefore the upper section of the test stand where sampling

occurs must be at minimum of 9 feet (2.75 m) long. Additional length has been added to
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the upstream section to allow for multiple sampling ports. The test stand upstream of the
housing consists of approximately 10 feet (3 m) of 6 inch (15.24 cm) stainless steel
piping, access ports, an air compressor, volumetric flow control valve, DOP Generator,
flow control sensor, particle measurement instrumentation, and air stream condition
instruments. The upstream piping can be seen in Figures 14 and 15. Design drawings for

all piping sections and the assembly are given in Appendix D.

Figure 14  FI test stand upstream piping going into housing
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Figure 15 FI test stand upstream piping entering building

Downstream of Housing

As with the upstream sampling section of the test stand, the aerosol sampling
location downstream of the housing must be a minimum 8 pipe diameters downstream of
disturbances and 10 pipe diameters upstream of disturbances [15]. Therefore the aerosol
sampling location downstream of the housing must be at least 4 feet (1.22 m)
downstream of the filter housing and 5 feet (1.52 m) upstream of any flow disturbance
such as a downstream venturi or pipe bend. The downstream measurement section of the
test stand must then be at least 9 feet (2.75 m) long. Additional length has been added to
the upstream section to allow for multiple sampling ports. The downstream section of

piping can be seen in Figures 16. The design drawing can be seen in Appendix B.
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Figure 16  FI test stand downstream piping elevated section

The completed test stand housing is shown in Figure 17.
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Figure 17  Assembled FI test stand housing

Procedures for the assembly and disassembly of the FI test stand can be found in

Appendix D.

High temperature section

An additional component of the test stand is required to accomplish the resistance
to heated air test called for in Section FI-5150. FI-5150 calls for testing up to 750° F
(400° C). This will include replacing the upstream section of the test stand with a

reconfigured one that includes one or more electric heaters. Figure 18 provides a drawing
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of the high temperature test configuration. The upstream section of the test stand will be
disconnected and replaced with a blind. Insulation, not shown in the following figure, is

required as specified by the ICET safety officer for safety of workers during operation.

fa—38 i

13'-8"

Figure 18 FI test stand high temperature testing section

High pressure test stand

Metal media filter elements using sintered metal fiber in a pleated configuration
gain resistance to collapse by an internal cylindrical core. The core material is a heavy
gauge lattice work cylinder providing higher lateral strength to the filter element. High
differential pressure failure of metal media elements employing either sintered metal
fiber or powder normally occurs when the element collapses. Therefore determining the
collapse pressure of filter elements is unique to this type of filter. A separate test unit has
been designed to determine the core collapse pressure for metal media elements. Figure
19 provides the drawing for high pressure test stand that will employ a viscous liquid to

determine collapse pressure.
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Figure 19  FI high pressure test stand design

Air supply system
Two air supply systems can be used on the test stand. The first consist of two

Spencer Vortex blowers connected in series capable of generating a volumetric flow of

133 CFM. The Spencer Vortex blowers are shown in Figure 20.
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Figure 20 Spencer vortex blowers for FI test stand

A claw compressor with a variable speed drive is used for flow rates from 50 to
160 ACFM (1.42 to 4.53 m*/min). This claw compressor was selected because of its
ability to reach the desired flow rates as well as be able to overcome the maximum

estimated pressure drop. The claw compressor used is shown in Figure 21.
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Figure 21 FI test stand claw compressor and muffler

The design of this claw compressor causes it to produce oscillations in flow and
pressure. This unsteadiness is undesirable for the filter testing. Pulsation of air flow is
damped by connecting a muffler to the claw compressor and providing air flow through a
rubber hose going to two air tanks in series.. The rubber hose and air tanks are shown in

Figure 22 and Figure 23.
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Connecting HQg

Figure 22 FI test stand rubber hose connecting claw compressor to air tanks

Figure 23 FI test stand buffer air tanks

Flow rates below 55 ACFM (1.6 m*/min) will be accomplished using an air
compressor with an automated flow control valve because of the limited range of the

blower,.
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The Baldor variable frequency drive shown in Figure 24 is used to control the
frequency on the claw compressor or blower. This changes the speed of the blower or

claw compressor and increases or decreases the flow rate.

-fg —= INVERTER
& =———=TECHNOLOGY

Figure 24  Variable frequency drive for FI test stand

Fine tuning of the flow rate into the test stand is regulated by use of an air bleed
off valve. The percent this valve is opened is controlled on the test stand computer. This

pneumatic valve is shown in Figure 25.
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Figure 25  Pneumatic bleed off valve for FI test stand

For flow rates greater than 50 CFM A venturi flow measuring devise is used to
monitor flow rates greater than 50 CFM and for flow rates below 50 ACFM an orifice

plate is used. The venture used to measure the flow is shown in Figure 26.
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Figure 26 Venturi used to measure flow rate on FI test stand

Chiller and heat exchangers

Conditions inside the test stand are controlled using a water chiller and heat
exchanger to adjust the air stream to the desired conditions. Air stream conditioning
equipment is located outside due to space limitations. The equipment used to control the
relative humidity and temperature in the test stand are a PCW060 Parker Hyperchill
water chiller, a 4 foot long Standard Xchange model SX2000 shell and tube heat
exchanger for cooling using water from the chiller and a 2 foot long Standard Xchange
model SX2000 shell and tube heat exchanger for reheat using waste heat off the air
before the chiller heat exchanger. These heat exchangers and water chiller used are

shown in Figures 27 and 28.
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Figure 27  Hyperchill water chiller for air stream conditioning on FI test stand

Figure 28 Heat exchangers for control of air conditions on FI test stand
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Control of temperature and relative humidity is accomplished by changing the
percent of air bypassed around the reheat heat exchanger, changing the set point
temperature on the water chiller, and changing bypass percent around the chiller heat
exchanger. The reheat heat exchanger bypass is controlled using the test stand computer
allowing the user to specify how much the bypass valve is opened. Controls on the test

stand computer can be seen in Figure 29.

15992 days, 8 hours, 9 minutes, 49 seconds

Figure 29  Heat exchanger bypass controls and frequency controller of variable
frequency drive shown on test stand computer screen

The chiller temperature is controlled by using the control panel on front of the
chiller to set the desired temperature. The chiller temperature control can be seen in

Figure 30.
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Figure 30 FI test stand chiller control panel

Health and safety

This project presents many possible safety hazards. The test stand to insert and
remove filter elements creates several overhead hazards that range from low beams to
falling objects. Hard hats are required in the testing area during the phase of operation.
Initial problems with loud noise from the claw compressor made it necessary for hearing
protection to be worn. This issue has been resolved by using several buffers between the
claw compressor and the test stand. Radioactive Sr-90/y-90 beta sources that are used for
particle neutralization and Krypton-85 used in the TSI Model 3080 electrostatic classifier
requires monitoring of employs exposure by a dosimeter. Dosimeters are read monthly
and exposures are added to employee records. Addition of the high temperature section of
the test stand will require insulation and safety barriers to be installed during high
temperature testing. A health and safety plan was prepared by Donna Rodger, the ICET

certified industrial hygienist, and is available at ICET upon request.
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Test conditions sensors

The ICET FI test stand is fully instrumented with sensors and controls to
continuously monitor and control testing conditions. Installed sensors include
temperature, static pressure, relative humidity, flow rate and differential pressure. Table 9

lists these sensors and their respective uncertainties.

Temperature Measurement

Temperature inside the test stand is measured at several locations including
immediately before and after the filter elements to ensure they reach the required
temperature. Omega mini temperature transmitters with PT100 TRD probes are used to

monitor the temperature in the test stand.

Differential Pressure Measurement

Omega differential pressure transducers of various ranges are used to monitor the

differential pressure across the filter elements.

Static Pressure Measurement

ProSense pressure transmitters are used to monitor the static pressure at various
locations inside the test stand to ensure that the pressure in the test stand does not exceed

15 psig.

Relative Humidity Measurement

The relative humidity of the airstream in the test stand is monitored to ensure
consistent humidity levels during testing. Vaisala dew point and temperature transmitter

is used to monitor the relative humidity inside the test stand.
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Flow Measurement

The flow rate inside the test stand must be monitored. A Primary Flow Signal 6”

venturi 1s used downstream to monitor the flow rate and to assure that the filter elements

are being tested at the rated flow for the elements.

Table 9 Accuracy of ICET FI Filter Test Stand Sensors

Sensor Manufacturer |[Model Number |Range Accuracy
Temperature Omega TX-M12-RTD-C +/-0.2 + (0.05 %) +
Transmitter output Accuracy

Temperature RTD |Omega
Probe

PR-22-3-100-B-1/4-
0900-M12

-50 to 500 C

+/-0.15 C of reading

Differential Omega PX409-2.5DDUI [0 to 2.5 psig [0.08% of reading
Pressure PX409-0005DDUI [0 to 5 psig
PX409-015DDUI |0 tol5 psig
Static Pressure IProSense SPT25-20-0030D |0 to 30 PSIG {+/- 0.50 % full range
Relative Humidity [Vaisala HMT338 0to 100%  +/-1.0% (0-90% RH)
+/-1.7% (90-100% RH)
+/-0.2 degree C
Venturi Primary Flow 6" HVT-FV 50 to 375 +/- 0.50% of Actual
Signal Reading

The location of test stand components and sensors located inside the building are

shown in Figure 31.
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Figure 31 FI test stand sensor locations

Control system

Data from all sensors and controls are continuously logged by the test stand
system control and data acquisition (SCADA) computer and software. Wonderware
software is used as the interface for input of flow rate parameters, sensor reading display,
and data download. The Wonderware software communicates with the Program Logic
Controllers (PLC) to send data such as opening and closing valves or receive data such as
temperature and differential pressure. Visual monitoring of testing parameters is aided by
the presence of a large (42") monitor. This monitor is mounted above filter housing of the
test stand and can be easily viewed from most any location within the test facility.

The SCADA unit is equipped with a touch screen display as illustrated in Figure
32 for user input. Flow through the test stand is produced by a forced draft blower with

control accomplished by software that uses mass flow data generated as the differential
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pressure across a calibrated orifice plate or venturi and a variable frequency drive (VFD)
to modulate blower speed. The volumetric flow rate of the test stand is set by input of
desired flow rate into the control system computer. This contros the bypass valve and

direct the specified flow rate through the test stand.

Figure 32 FI test stand control system computer with touch screen display

Image collection
The ICET FI test stand is equipped with several ports for cameras to be inserted
for viewing the entire length of the filters during testing. This also allows for conditions

on of the filter elements to be monitored during testing without removing the filters. They

84

www.manharaa.com



can also be used to observe the effects of the back pulse cleaning down the length of the

element. This setup is shown in Figure 33.

Figure 33 Upstream digital camera used with FI test stand.

A.) Digital camera for insertion into test stand. B.) Camera ports on the housing. C.)
Computer and display for image collection software

Aerosol generation

Aerosols used in characterization testing were generated using a system designed
and constructed at ICET. The design for this apparatus is discussed in the master’s thesis
titled “Design of a Large Scale Aerosol Generator” prepared by Kristina Hogancamp at
the Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State
University. This aerosol generator is composed of a nozzle for spraying a liquid aerosol
and a large heated stainless steel vessel that is used to dry the liquid aerosol. The nozzle
used in this apparatus can be seen in Figure 34. The heated body of the aerosol generator

is shown in Figure 35. This unit has historically been used with an induced draft test
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stand due to the forced draft test stand the traditional Plexiglas top on the unit has been
replaced by a steel plate and secured with heavy duty clamps to ensure a tight seal. The
aerosol generation segment and all of the test stand must be grounded otherwise static

buildup will influence aerosol measurement and filter loading.

Figure 34  Aerosol nozzle for large scale aerosol generator used on FI test stand
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Figure 35 Stainless steel spray vessel and heater system for generating spray dried
aerosols used in characterization testing

Aerosol measurement instruments

Three aerosol measurement instruments are used to continually collect and record
particle size and concentration values. The TSI Model 3340 Laser Aerosol Spectrometer
(LAS) operates on the principle that the light scattered by a particle within an active laser
cavity is a direct function of its size. Particles produce pulses of light during transit
thought the laser beam. The light pulses are sensed by a pair of detectors that in turn are
analyzed by four cascading amplifier stages coupled with analog-to-digital converters for
sizing. Particles are aerodynamically focused to a sample stream diameter smaller than
the laser beam diameter to avoid edge effects. The use of the LAS is limited to
downstream measurements due to the concentration limits of the instrument. TSI model

3340 LAS is shown in Figure 36.
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Figure 36 TSI Model 3340 LAS used on FI test stand

The TSI Scanning Mobility Particle Sizer Spectrometer (SMPS) is used for
particle concentration measurements upstream of the filter elements. The SMPS measures
size distributions from 2.5 nm to 1000 nm using a combination of an electrostatic
classifier and a condensate particle counter. Particles are classified with the TSI model
3080 Electrostatic Classifier (EC) and their concentration is measured with a TSI model
3775 Condensation Particle Counter (CPC). The EC measures the size distribution of
particle using an electrical mobility detection technique. The a bipolar charger in the EC
charges the particles to a known charge distribution. A custom 37.4 in (95 cm)
differential mobility analyzer (DMA) is used to measure particles across a wider size
range than the standard DMA. The differences in particle size ranges measurement ability

can be seen in Table 9. The particles are then classified according to their ability to
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traverse an electrical field and counted with a CPC. Figure 37 shows the CPC used at

ICET and Figure 38 shows the EC with a 37.4 inch (95 cm) custom DMA that is used.

Figure 37 ~ TSI Model 3775 CPC
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Figure 38 TSI Model 3080 Electro Static Classifier with Custom 37.4inch (95 cm)
DMA used on FI test stand

The TSI Model 3321 Aerosol Particle Sizer Spectrometer (APS) is used for
particle concentration measurements upstream of filtration. The model 3321 APS is a
high-performance, general purpose particle spectrometer that measures both aerodynamic
diameter and light-scattering intensity. The model 3321 provides accurate count size
distributions for particles with aerodynamic diameters from 0.5 to 20 micrometers (um).
It detects light-scattering intensity for particles from 0.3 to 20 um. The aerodynamic

diameter is determined by the difference in speed detected by two lasers to determine the
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acceleration of the particle. Larger particles will accelerate slower and smaller particles
faster, using this the size is determined by the time of flight. This size and aerodynamic
diameter is then converted from this flight time using a calibration curve. The APS is
used in conjunction with a diluter to reduce the overall concentration of the sample by a
set dilution ratio. The maximum particle concentration for the APS (without diluter) is
1000 particles per cubic centimeters. The APS at ICET is equipped with a TSI 3020A
diluter to achieve a dilution ratio of 20:1 or 100:1. This allows for a two order of
magnitude increase in concentration of particles evaluated. The concentration of particles
is measured to within plus or minus ten percent of the reading. TSI model 3321 APS

equipped with a TSI 3302 diluter is shown in Figure 40.

Figure 39 TSI Model 3321 APS with diluter used with FI test stand
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Instruments utilized at ICET include CPC, SMPS, APS, and LAS. The
instruments used at ICET utlize current technology to provide quality data. Table 10

shows the instruments used at ICET and their performance capabilities.

Table 10 Aerosol Measurement Instrumentation

Particle Size

Instrument #/cc (min) | #/cc (max) Distribution (um)

Scanning Mobility Particle Sizer (SMPS)
J TSI Model 3080 Electrostatic
Classifier

° 37.4 inch (95 cm) Custom o
Differential Mobility Analyzer (DMA) 2 1x10 0.008 - 1
. TSI Model 3775 Condensation
Particle Counter (CPC)

Scanning Mobility Particle Sizer (SMPS)
° TSI Model 3080 Electrostatic
Classifier

° TSI Model 3081 Differential 2 1x108 0.008 - 0.6
Mobility Analyzer (DMA)

° TSI Model 3772 Condensation

Particle Counter (CPC)

TSI Model 3321 APS IX10°

(with TSI Model 3302A Diluter) ! (1x109) 03-20
TSI Model 3340 LAS <002 | 18xI10° 0.09-7.5

The aerosol instrumentation utilized at ICET represents some of the most up to
date and highest performance aerosol measurement instrumentation commercially

available.

Pressure reducer

The higher pressure in the upstream section of the test stand will exceed the

capabilities of the aerosol measuring instruments. A pressure reduction device is

92

www.manaraa.com



therefore required at pressures greater than one PSIG in the upstream airflow for aerosol
sampling. The pressure reduction device is used to reduce the pressure in sampling lines
to those suitable for instruments used for sampling of the aerosol. This device was
designed according to the dimensions from “Design and Performance Evaluation of a
Pressure-Reducing Device for Aerosol Sampling from High-Purity Gases” [40]. The
apparatus combines an orifice plate with an expansion chamber to reduce the pressure of

the sample airstream. The completed pressure reducer is shown in Figure 40.

Figure 40  Pressure reducer fabricated for use on FI test stand

Data reduction

Data collected during testing is saved onto non-network computer systems to
provide security of data collected. ICET procedures for saving, transferring and handling
data collected during testing are utilized for data reduction. Data recorded during testing
is reduced using excel spreadsheets that have been prepared for this application and
undergone validation and verification. These spreadsheets convert the raw data into a
numerical graphical form for ease of interpretation. Some of the data from the

instrumentation may be directly used without having to do any calculations manipulation
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while other data must be calculated inside the spreadsheet. The SMPS and APS provide
normalized concentrations while the LAS provides raw counts and therefore must be

normalized. Appendix A lists general procedures available at ICET for data handling.

Particle Concentration

Particle concentration is the measurement of the number of particles in a sample
divided by the volumetric flow rate and given as #/cc. The APS and SMPS use on-board
software to report the concentration while the LAS must be calculated using an external
spread sheet. Concentration measurements used for testing purposes are normalized in
order to provide an appropriate comparison between the up and downstream instruments.
Data are normalized based on the volumetric flow rate and the number of channels per
century of resolution of the measurement instrumentation. The number of channels per
century of resolution is the number of channels that are used between an order of
magnitude of particle sizes. Data produced using the LAS is normalized using Equation
33 where Ncount is the raw count of particles, Qsampete 1S the flow rate of the sample in
cubic centimeters per minute, Tsample the time required for sampling and Channels is the

number of channels per century of resolution.

. . N
Normalized Concentration = Gem——— X Channels (33)
Tsample X P /60

Particle Size Distribution

The particle size distribution for up or downstream measurements are best
represented graphically represented as concentration versus particle diameter. Data from

the APS and SMPS must be merged to generate the upstream PSD curve. The SMPS
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collects sample collection time is 150 seconds while the collection time for the LAS and
APS is 75 seconds. The average of every two samples for the APS and LAS is compared
to the SMPS sample at the corresponding time to merge the data. The downstream PSD
curve must be generated from the LAS. The comparison of concentration of a particle
size of upstream and downstream measurements is used to produce a penetration curve.
An example of a particle size distribution created from data collected using the TSI APS

and TSI SMPS is shown in Figure 41.
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Figure 41 Particle size distribution for potassium chloride during testing of metal
media filter elements

Filtering Efficiency

The filtering efficiency for the filters tested was calculated using two different

methods to give a comprehensive evaluation of the filtration capabilities of the filter
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elements. Equation 34 is used to calculate the efficiency for filter testing. Conc is the

normalized concentration and can represent either the mass or number concentration.

__ (Concpps+Concsmps)—Concras

E

(34)

(Concaps+Concsyps)
The first method used gives the total filtering efficiency over the whole spectrum
of particle diameters. This method for total efficiency is used to determine if the filter
meets the HEPA efficiency standard of 99.97% efficient for particle diameters of 0.3 um
and greater. An example of the filtering efficiency and differential pressure versus time is
shown in Figure 42.The spikes in filtering efficiency showing a decrease are due to the

upstream instrumentation being disconnected for a period to be cleaned.
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Figure 42 Example of total filtering efficiency and differential pressure versus time

The second method of showing efficiency is to determine the efficiency of the

filter as a fraction of particle size. This simply compares the concentration up and down
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stream of a particular particle diameter. This uses Equation 34 shown above but for Conc

the normalized concentration of one particle size is used. This is generally presented in

graphical format. The filtering efficiency curve can be used to identify the most

penetrating particle size. The efficiency versus particle size plot can be seen in Figure 43.
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Figure 43  Example of filtering efficiency vs particle diameter curve

Most Penetrating Particle Size (MPPS)

The MPPS is the particle size for which the filtering efficiency is at a minimum
[7]. The most penetrating particle size can be affected by a variety of factors such as filter
media thickness, filter media packing tightness, flow rate, and filter cake thickness. The
most penetrating particle size is found by comparing the upstream and downstream PSDs.
The MPPS is identified in Figure 45 above on the penetration curve.

The mass loading curve of a filter gives a representation of the amount of mass

that can be loaded onto a filter before it either ruptures or reaches the end of its service
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life. Using the PSD, volumetric flow rate, aerosol concentrations, and mass loading curve
the life of a filter can be predicted. An example of a mass loading curve is shown in

Figure 44.
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Figure 44  Example of mass loading curve
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CHAPTER V

RESULTS AND DISCUSSION

Test stand characterization

Systems used to provide air flow through the test stand need to be matched to the
filter elements being evaluated. Section FI will provide for qualification of a broad range
of filter volumetric flow rates and maximum differential pressure combinations. It is
likely that a range of compressors/blowers will be needed to service the complete range
of testing needs.

Two compressor systems have been included in this characterization study.
Neither of these systems completely satisfies the performance requirements for the FI test
stand. However, one or both may see service for some segment of the filter element size
range.

The compressor systems evaluated for providing air flow through the test stand
are identified in Table 11 along with their basic information. Flow rates during
characterization and filter elment testing is recorded in actual cubic feet per minute

(ACFM)
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Table 11 Two air supply systems used on FI test stand
Air Supply System
Horse Max
Manufacturer | Model Number Type Power RPM | ACFM
Spencer 07H660W436 Vortex Blower 10 | 3450 133
Spencer 36H711X100G1 | Vortex Blower 4.2 | 2850
Elmo Claw
Rietschle DLR-300 Compressor 20 | 3450 160

A set of three Porvair Filtration sintered metal fiber filter elements 3.3 feet (1 m)

in length and 3 inches (8 cm) in diameter have been used during these characterization

studies.

The first series of tests utilized a combination of the two Spence Vortex blowers

arranged in series. This set of blower was capable of providing a flow rate of up to 133

ACFM at 6 in. w.c. but are limited in their capability to overcome differential pressure

that will occur when filters are loaded.

The second series of tests used the ElImo-Rietschle claw compressor. It was

demonstrated to have the capability of producing flow rates from 20 to 160 ACFM and

pressures up to 10 PSIG. Characterization of the test stand was performed using each air

supply system at multiple flow rates to map performance capabilities.

Figure 45 shows the performance of the dual blower system installed in series

tested at various flow rates. The flow and differential pressure began to increasly

fluctuate as the flow rate was reached the upper range of the blowers the flow and

differential pressure began to increasingly fluctuate.
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Figure 45 Media velocity for Porvair metal media filter elements using Spencer
vortex blowers

Data represented in Figure 45 have been compiled into tabular from in Table 12.
These include flow rate, differential pressure across the filter, filter media velocity and
the standard deviation of each. Statistical variability of key parameters has also been
compiled in Table 12.

The flow rate and the differential pressure are direct readings from the test stand
and the media velocity is calculated from the flow rate. Section FC limits media velocity
to five ft/min for fibrous glass media filters. FI provides for user specified media velocity
that can be in excess of five ft/min. However, it is good to include the five ft/min media
velocity in the test matrix to use as a bench mark for comparison with FC filters.
Therefore data for less than 5 ft/min is collected as well as data up to the maximum limit
of the blowers. Data in Table 12 shows that filter differential pressure increases as flow
rate through the filter increases. Data for blower performance in Table 12 shows the

blowers best performance under 90 CFM. Once 90 ACFM is reached the standard
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deviation in the flow and differential pressure increases. This can be attributed to the
increased fan speed and increase in differential pressure.

Standard deviation for all the parameters reached a maximum at 105 ACFM. This
is the least desirable point for this blower to operate. The smallest standard deviation

occurs at 60 CFM. This is most likely the optimal operating speed for the blowers.

Table 12 Volumetric flow, differential pressure, media velocity and standard
deviation for Spencer Vortex Blowers

Actual Flow Rate Filter Media Velocity
(acfm) Filter dP (in w.c.) (ft/min)
Target Flow LS)tandard Standard Standard
Rate (acfm) |Average eviation |Average |[Deviation |Averages [Deviation
6060.0647 0.2124 2.2256 0.0249 2.6997 0.0095
75(75.5058  10.3109 2.8205 0.0392 3.3937 0.0140
9090.7446  |0.5127 3.5583 0.0494 4.0786 0.0230
105[105.2932 0.7170 4.3296 0.1302 4.7325 0.0322
120]120.8363 (0.5416 5.2668 0.0890 5.4311 0.0243
125]125.1957 (0.5839 5.5463 0.0975 5.6270 0.0262
133133.7373 0.5979 6.0784 0.0728 6.0110 0.0269

Maintaining laminar flow through filter media is an important performance
parameter for filtration. A plot of the media velocity versus differential pressure is one
method for determining of the flow through the filter media is laminar. If the media
velocity and differential pressure have a linear relationship the flow can be considered
laminar through the filter. Figure 47 shows the curve to have an increase in slope when
the media velocity reaches 4 ft/min. This appears to be the result of the fan performance
at 105 ACFM. The data above shows the standard deviation flow parameter to have a
noticeable increase at 105 ACFM but remains nearly steady for the rest of testing.

Because the curve continues a linear trend after this point it is assumed the flow is still
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laminar and the change in slope is not due to increase in velocity but due to the
performance of the fan. Values from Table 12 are plotted in Figure 46 to demonstrate the

linear flow through the filter elements.

Media Velocity [ft/min)
.

] 1 1 3 1 5 [ 7
Diffarential Prazsure [in. w.c.)

Figure 46  Differential Differential pressure versus media velocity for Porvair metal
media filter elements using Spencer vortex blowers

The sintered metal fiber filter elements were tested for resistance to air flow and
pressure at flow rates of 60, 80, 100, 120, 140, and 160 ACFM with media velocity of
2.7,3.6,4.5,5.4, and 7.2 feet per minute respectively utilizing the Elmo-Rietschle claw
compressor. Figure 47 shows the flow rates for testing conducted with the claw
compressor at the specified flow rates. Broadening of line segments show that

fluctuations in flow increase as the flow rate increases.
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Figure 47  Test flow for Porvair metal media filter elements rate at multiple set points
using claw compressor

Figure 48 shows the differential pressure across filter elements for flow rates
using the claw compressor. This plot demonstrates the direct correlation between
differential pressure and flow rate for the metal media elements. The differential pressure

increases incrementally as the flow is increased.
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Figure 48 Differential pressure across for Porvair metal media filter elements at
multiple flow rates using claw compressor

Media velocities for the Porvair sintered fiber metal media filter elements are
provided in Figure 49. Media velocity is routinely used as a reflection of laminar flow
through the filter medium. Media velocity corresponding to 60 ACFM is 2.7 ft/min and
160 ACFM is 7.2 ft/min with each step between being the next increase in flow. The

higher media velocity (7.2 ft/min) is expected to be at the upper limit of laminar flow.
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Figure 49  Media velocity for Porvair metal media filter elements at multiple flow
rates using claw compressor

Data from Figures 47, 48 and 49 are summarized in Table 13. This includes flow
rate, differential pressure across the filter, filter media velocity and the standard deviation
of each to display statistical data for the blowers. Flow rate and the differential pressure
are direct readings from the test stand and the media velocity is calculated from the flow
rate and filter element surface area. Data for less than 5 ft/min were collected as well as
data up to the maximum limit of the blowers. The data for the blower performance in the
table shows the blowers to have optimum performance under 120 ACFM. The standard
deviation in the flow and differential pressure increases at flows greater than 120 ACFM.

The maximum standard deviation for the flow rate and media velocity occurs at
120 ACFM. This was an unexpected finding because it would logically occur at the
maximum flow range. The maximum standard deviation for the differential pressure

occurs at 160 ACFM. This is the expected point of the maximum standard deviation
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because it is at the top of the range of the claw compressor. The smallest standard
deviation occurs at 60 ACFM where the compressor speed and differential pressure are

the lowest.

Table 13 Differential pressure across filter, flow rate, and standard deviation statistics
for the claw compressor testing.

/Actual Flow Rate Filter dP (in w.c.) Filter Media
(acfm) Velocity (ft/min)
Target Flow |Average [Std Dev |Average [Std Dev Average [Std Dev
Rate (acfm)
60 60.4842 0.3361 2.6868 0.0651 2.7185 0.0151
80 81.0568 0.6039 3.5512 0.0461 3.6432  0.0271
100 100.3454 0.6792 4.619 0.0574 4.5101 0.0305
120 115.9792 0.884 5.592 0.0641 5.2128 0.0397
140 143.2432 0.6657 7.2939 0.0611 6.4382  0.0299
160 163.9039 0.8374 8.6486 0.0814 7.3668 0.0376

The values for media velocity and differential pressure from Table 13 are plotted
in Figure 50 to demonstrate the nearly linear relationship between differential pressure
and media velocity for the claw compressor. The slope decreases at 80 ACFM but overall
maintains a linear relationship and thus the flow can be assumed to be laminar through

the filter.
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Figure 50  Differential pressure versus media velocity for Porvair metal media filter
elements using the claw compressor

The maximum static pressure as a function of flow rate is a demonstration of the
performance capabilities of the claw compressor. Figure 51 shows the maximum flow
rate for pressures up to 11 psig. To test the maximum pressure at specified flow rates a
valve was gradually closed on the downstream section of the test stand to increase the
static pressure inside the upstream section of the test stand. The flow was taken to
maximum while attempting to achieve 10 PSIG. The maximum pressure of 11 PSIG
occurred at 80 ACFM as the flow was increased beyond 80 ACFM up to 160 ACFM the
maximum pressure continually decreased. For the flow rate of 160 ACFM the maximum

achievable pressure was 1.3 PSIG.
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Figure 51 Maximum static pressure at flow rates from 60 ACFM to 160 ACFM for
Porvair metal media filter elements

Neither air supply system (Spencer or Elmo-Rietschle) was able to achieve the
performance criteria target of 200 CFM for three one meter elements tested. Filter
elements varying in size from one inch in diameter and twelve inches in length to four
inches in diameter and almost seven feet in length will be evaluated using this test stand.
Sintered metal fiber filter elements can be expected to have a clean differential pressure
of three to five in. w. c. at rated flow. Sintered metal powder filter elements can be
expected to have an initial differential pressure of 20 to 30 in. w. c. This test stand was
designed to with stand static pressure much greater than the maximum expected pressure
of 15 psig. Therefore the compressor is the only component needing to be changed to
achieve flow rates at the higher static/differential pressure. Both systems evaluated can be

successfully employed within their range of capability. The ability of this test stand to
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test filter elements individually or up to three at once allows for testing fewer filter
elements to increase media velocity.

A comparison of the standard deviation of the flow rate through the test stand for
the vortex blowers and the claw compressor show that the vortex blowers maintain a
smoother flow. The vortex blowers were not designed for producing elevated differential
pressures therefore no data were collected for elevated differential pressure using the
Spencer vortex blowers. These are ideal for testing small filter elements that require low
flow rates and low differential pressures.

The claw compressor was tested at up to 10 psig. These data show that filter
testing at low flow rates and low differential pressures may be accomplished with more
steady flow using the vortex blowers but as flow rate and differential pressure increase it
is necessary for the claw compressor to be used. The vortex blowers may be used in some
applications that do not require loading such as initial efficiency test for small filters.
Larger filters or loading tests will require the use of the claw compressor to achieve
higher flow rates and differential pressures. To achieve the desired criteria for this test

stand a larger compressor must be sized and acquired for use.

Temperature and relative humidity control

Compressors used to produce air flow through the test stand use outside air that
requires temperature and humidity conditioning. Temperature and relative humidity can
vary during testing due to changing environmental conditions. A series of evaluations
were completed to determine the operating envelope for current equipment including the

compressors, chiller, and heat exchangers.
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The ASHRAE psychrometric chart no. 1 shown in Figure 52 gives the expected

path of air stream conditions for the expected upper limit worst case scenario for ambient

conditions.
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Figure 52 ASHRAE psychrometric chart no 1

Manipulation of the water chiller and heat exchanger parameters is required for
adjusting the relative humidity and temperature inside the test stand. Decreasing water
temperature in the chiller will cause water to condensate and therefore reduce the relative
humidity of the reheated air stream. Allowing more air to flow through the reheat heat

exchanger from the chiller will increase temperature of the air thus decrease relative
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humidity. These adjustments will not be consistent because environmental conditions
vary throughout the day and over the course of the year. The conditions of the air stream
dictate changes that must be made to the air conditioning system using the bypass
controls on the test stand computer and chiller control panel located on the front of the
chiller unit.

Employing a proper balance of the chiller and reheater allows the test stand to
operate within required limits. The plot of relative humidity and temperature versus time
shown in Figure 53 demonstrates the effect of the chiller temperature on the relative
humidity and temperature. The chiller water temperature setting is shown incrementally
being stepped up over the course of the testing from 45° F to 65° F. The temperature of
the air stream is shown to slightly decrease then increase over the course of the testing.
The relative humidity is shown to increase steadily over the course of the testing. The line
representing the chiller temperature is the setting on the chiller and not the actually
temperature of the water in the chiller. The chiller is set for a differential temperature
setting of 2° F so that it will cycle and continue chilling once the water gets outside of the
+2° F range. Appendix C gives the procedures for adjusting the temperature and relative

humidity.
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Figure 53 Plot of the effects of the chiller water temperature setting on the
temperature and relative humidity of the air stream

Figure 54 shows that as the reheat heat exchanger bypass is increased the
temperature decreases while relative humidity oscillates slightly about the desired set
point. During this testing the reheat heat exchanger bypass was incrementally increased
by 25% from 0 to 100%. This increase is shown as the step function on the plot. This can
be seen on the plot as the line that is stepped up from 0 to 100%. The temperature during
this testing is shown to decrease slowly and steadily and the bypass percent for the reheat
heat exchanger is increased. The relative humidity in this plot has a large dip at the
beginning and varies throughout the testing possibly due to the system during warm up.
This plot also shows that there is no noticeable trend on the relative humidity as the
bypass percent on the reheat heat exchanger is increased. This demonstrates that the

chiller has greater control on the operating parameters.
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Figure 54  Plot of the effects of the reheat heat exchanger on temperature and relative
humidity of air stream

The following figures show the controllability of test parameters while achieving
a combination of the maximum and minimum of each parameter at 50 ACFM. This
demonstrates the ability to control multiple parameters during operation to keep the test
conditions at 50 ACFM within the required range of 60° F to80° F and 40% to 60%
relative humidity.

Testing data given in Figure 55 were calculated using the target point of 60° F and
40% RH at 50 ACFM. Throughout this test the temperature was maintained near 72° F
and the relative humidity near 38%. There are noticeable oscillations in the relative
humidity that occur with a frequency of about 11 minutes and amplitude of about 2% RH.
The aerosol generator has an high exit air flow and very low moisture content. Input from

the aerosol drying process exceeds the capability of the chiller to properly control the
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temperature under very low flows. This will need to be resolved by using a heat
exchanger to cool the heated aerosol air flow before it is injected into the test Stand. The
flow could not be brought below 70° F during this testing due to the effects of the heat

from the aerosol generator.
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Figure 55 Demonstration of control of temperature and relative humidity for 50
ACFM and target point of 60° F and 40% RH

The target control conditions for testing shown in Figure 56 was 60°F and 60%
RH and 50 CFM. Through this test the temperature was maintained near 75° F and the
relative humidity average starting near 50% and decreasing to about 48% . Once again
there are noticeable oscillations in the relative humidity that occur with a frequency of
about 11 minutes and amplitude of about 2% RH. The flow stayed near 75° F during this
testing due to the effects of the heat from the aerosol generator. Modification of the

aerosol generator and the reheat heat exchanger are required to reach the desired 40%
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relative humidity at low flow rates. Results from this test and all of the testing done to
evaluate performance of the chiller/reheater combinations have been compiled into Table

15 on page 123.
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Figure 56  Demonstration of control of temperature and relative humidity for 50
ACFM and target point of 60° F and 60% RH

The target point for testing shown in Figure 57 was 80°F and 40% RH and 50
CFM. Through this test the temperature increased from 80° F to 82° F. The relative
humidity started near 43% and decreased rapidly to 33% before the temperature on the
water chiller was increased and the relative humidity returned to oscillating as it had been

in the above figures and ended near 36%.
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Figure 57  Demonstration of control of temperature and relative humidity for 50
ACFM and target point of 80°F and 40% RH

The target point for testing shown in Figure 58 was 80°F and 40% RH and 50
CFM. Through this test the temperature was maintained at approximately 80° F. The
relative humidity started near 56% and ended near 54% . The irregular waves in the

relative humidity are due to adjusting the temperature of the chiller water.
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Figure 58 Demonstration of control of temperature and relative humidity for 50
ACFM and target point of 80°F for 60% RH

Flow rate and differential pressure over the entire period of testing at 50 ACFM
are shown in Figure 59. The target rate for flow was 50 ACFM but as can be seen on the
figure below the flow was actually maintained near 53 CFM. The dP remained relatively

constant throughout the testing at 2.4 in. w.c.
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Figure 59  Flow rate and differential pressure for control of temperature and relative
humidity testing for 50 ACFM

During testing at 50 ACFM the temperature was difficult to get into the low end
of the temperature range because of the heat generated from the aerosol generator. This
heat is sufficient to keep the temperature of the air stream above 70° F throughout this
testing even when trying to achieve 60° F. This can be remedied by cooling the aerosol
delivery temperature before injection into the test stand.

The following figures show the performance of the test stand while achieving the
maximum and minimum of each parameter at 160. This series of tests is equivalent to test
performed at 50 ACFM demonstrates the ability to control multiple parameters during

operation to keep the test conditions within the required range for the upper volumetric

flow rate.
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Testing for the plot shown in Figure 60 was accomplished using the target point
of 60°F and 40% RH for 160 CFM. Throughout this test the temperature was maintained
near 68° F and the relative humidity near 41%. There are noticeable oscillations in the
relative humidity that occur with a frequency of approximately 7 minutes and amplitude
of approximately 2% RH. The temperature was much easier to control for 160 ACFM
due to the larger ratio of air from the air conditioning equipment being mixed with the air

from the aerosol generator.
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Figure 60  Demonstration of control of temperature and relative humidity for 160
ACFM and target point of 60°F and 40% RH

The target control points for testing shown in Figure 61 were 60° F and 60% RH
for 160 CFM. Throughout this test the temperature averaged 63° F but within the
acceptable range of 60° F to 80° F. The relative humidity started near 59% and

experienced two large oscillations of approximately 10% relative humidity settling into a
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regular oscillating curve with a frequency of about 8 minutes and amplitude of about 2%

RH.
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Figure 61 Demonstration of control of temperature and relative humidity for 160
ACFM and target point of 60° F and 60% RH

The target point for testing shown in Figure 62 was 80° F and 40% RH for 160
CFM. During this 60 minute test the temperature increased from 76° F to 8§1° F. Once
again this is due to attempting to maintain conditions at the outer limits of test conditions.
Typical testing calls for target points in the middle of temperature and relative humidity
ranges and thus a variation of one or two degrees will not move it out of the range. The
relative humidity started near 46% and ended near 40%. These conditions are within the

specified range and can be held in this range if no drastic change occurs to ambient
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conditions. The same oscillations of approximately 8 minutes and 2% RH are seen on this

plot.
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Figure 62 Demonstration of control of temperature and relative humidity for 160
ACFM and target point of 80°F and 40% RH

The target point for testing shown in Figure 63 was 80°F and 60% RH for 160
CFM. Through this 60 minute test the temperature averaged 82° F. The relative humidity
started near 54% and ended near 56% with an average of 59%. The temperature for this
test was slightly above the prescribed testing range. This was due to maintaining the
temperature and relative humidity at the upper limit of their range. Balancing these two
resulted in the temperature exceeding 80° F. For typical operating conditions the

temperature and relative humidity will not be held at the upper limit and will be easier to
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keep within the prescribed conditions. The irregular waves in the relative humidity are

due to adjusting the temperature of the chiller water.
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Figure 63 Demonstration of control of temperature and relative humidity for 160
ACFM and target point of 80°F and 60% RH

Flow rate and differential pressure over the entire period of testing for 160 ACFM
are shown in Figure 64. The differential pressure during testing for 160 ACFM remained
relatively constant at 8.5 in. w.c. The flow rate varied during the testing with an initial

average flow rate 158 ACFM and an average of 162 ACFM.
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Figure 64  Flow rate and differential pressure for control of temperature and relative
humidity testing for 160 ACFM

The FI test stand must be capable of performing testing at consistent conditions to
ensure accurate results. The ability of this test stand to maintain consistent conditions can
be shown using standard deviation for testing parameters. Average and standard deviation
for the flow rate, differential pressure, temperature and relative humidity during

characterization testing at 55 ACFM and 160 ACFM are shown in Table 15.
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Table 14 Statistics for characterization of air stream conditions control

Flow Rate (ACFM) Filter dP (in. w.c.) Temperature Relative Humidity

Target |Avg. St. Dev.  |Avg. St. Dev. |Avg. St. Dev. |Avg. St. Dev.
Initial 53.2448 N/A 2.4650 N/A|  77.4578 N/A|  40.6378 N/A
60° F 40%

RH 53.0958 0.3010 24239 0.0228] 71.6688 0.2756] 37.8395 0.8012
60° F 60%

RH 53.5159 0.2684 2.4505 0.0232] 74.2578 0.3986] 48.8539 1.1035
80° F 40%

RH 53.6915 0.2618 2.4752 0.0026] 80.9364] 0.4744] 36.8615 1.9995
80° F 60%

RH 54.4554 0.2583 2.4925 0.0223]  80.9994] 0.1783] 55.7449 1.2747
Initial 158.1962 N/A 8.4320 N/A|  68.4697 N/A|  81.2966 N/A
60° F 40%

RH 159.2201 0.8411 8.4511 0.0761]  68.0701] 0.9472| 41.5855 2.1501
60° F 60%

RH 158.3305 1.0047 83770, 0.1177) 62.6072] 1.0576| 61.2208 2.2967
80° F 40%

RH 159.9541 0.8975 8.5469] 0.0807) 79.6180] 1.2427| 40.6732 2.2175
80° F 60%

RH 161.8867 0.8606 8.6645 0.0767] 819289 0.6841| 58.9492 1.8581

Testing was conducted at the low end (50 CFM) and the top end (160 CMF) of
the claw compressor capacity. Testing was conducted during May in Starkville, MS
where the approximate ambient conditions were 83° F and 55% RH. This test stand lacks
the ability to add moisture to the air and the heat exchangers for reheating are located
outdoors. Therefore operation during cold weather testing may require addition of
humidifying capability to the current system configuration.

Sinusoidal waves in the relative humidity of air for during testing were caused by
cycling of the chiller. Differential temperature settings on chiller allow cycling within the
range of the set point. Lowering the cycle temperature range on the chiller reduces the
magnitude of these waves but increases the frequency. The lowest differential
temperature setting for the chiller is 2° F. In Figure 65 the curve for the relative humidity

can be seen. The plot in Figure 65 shows the sinusoidal wave of the relative humidity
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from the cycling of the chiller. The small changes in the relative humidity on the plot are

due to the resolution of the plot. The differential temperature set point for the testing

shown in Figure 65 was 2 degrees Fahrenheit. Relative humidity is shown to slightly

increase as the test continues due to changing ambient conditions.
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Figure 65 Plot showing the relative humidity with the chiller cycling points notated

Aerosol generation

Continuous aerosol generation is required for loading tests that can last an

extended period of time (up to several days). Initial testing demonstrated the difficultly of

continually generating aerosol that included clogging of the spraying system. A larger

diameter spray nozzle hole allowed the particle generator to operate without frequent

cleanings.

Increasing differential pressures as filter testing continues will produce pressures

that exceed the one PSIG limitation of the aerosol measurement instrumentation. A
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pressure reducer based on the design developed by Rubow is used to accomplish particle
size distribution measurements at elevated static pressure in the upstream section of the
test stand. Initial characterization of the pressure reducer included comparison of
concentration and particle size distributions from conditions that do not require the
pressure reducer. Figure 66 shows that there is little to no change in the particle size
distribution caused by using the pressure reducer at low pressure (0.40 PSI). As the
pressure is increased to 7 PSIG the particle size distribution CMD is shifted slightly to
the left from approximately 0.16 pm at 0.40 PSIG to approximately 0.12 um at seven
PSIG. The plot in Figure 76 also shows the number concentration per cubic centimeter

reduces as the pressure is increased.

A000N0

40000

Cerzuntration (¥ /ee)

L0000

o000

Particle Dlamatar (pm)

Ao PSIHG PRSMPS Supvage < Lo PSING PRAPS Suprage Lo PSIPRSIAPS Aserag S laes PSIPRAPS Suprage
— ) PESIIPS A vmt e <A PSLAPS A apn = 2ESISIAPS doprgpe & 2PSIAPS dmmaye
WS PYSPS Sosrace LS PSLAPS Nimrane TESISMPE dyerape TP APS A

Figure 66 Particle size distribution for initial to 7 PSIG using pressure reducer

127

www.manharaa.com




Nonlinear reduction in number density values as the static pressure in the
upstream section increases may be due to slowed delivery of aerosols from the generator
to the test stand. Maintaining constant delivery rates for aerosols requires increasing
static pressures within the generator vessel. This will require revising the seals for the
vessel and nozzle feed lines. . An alternate method for source sampling of aerosols
known as Method 5i is currently being evaluated for use in determining the effectiveness

of the pressure reducer.

Filter testing

Filter elements were tested at 120 ACFM under ambient conditions. Table 16

shows the testing conditions.

Table 15  Filter and Testing Parameters

Filter Type and Testing Parameters and
Filter guidelines Aerosol
Porvair 120 ACFM
Sintered Fiber 60to 80°F
POR-F-001 Pleated Filter 40 to 60% RH
Mottt
Sintered Powder | 60 to 80° F Potassium
MO-P-001 Filter 40 to 60% RH Chloride

Test conditions such as media velocity, relative humidity and temperature will
affect the performance of a filter. Test conditions are monitored and displayed
graphically to compare changes of performance to changes in test conditions. The blower
used during these tests causes oscillations in the flow that can be seen in the width of

differential pressure curves in Figure 67. Increasing temperature over the course of the
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testing shown in Figure 67 is due to heating from compression as well as heat added from
the aerosol generator. A chiller and heat exchanger were connected in line with the

blower to bring the temperature within the specified range.
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Figure 67  Testing conditions for Porvair metal media filter elements during filtering
efficiency testing

A set of three sintered metal fiber filter elements was tested at 120 ACFM to
reach an equivalent media velocity of 5.4 ft/min for resistance to pressure, resistance to
air flow, and resistance to test aerosol penetration. Raw data collected during these tests
was reduced into graphical form to easily display the behavior of these filter elements.
Filter elements provided by Porvair Filtration have a length of 3.28 ft (1 m), diameter of

3.1 in. (8 cm), are of pleated geometry and constructed of sintered metal fiber produced

by Bekaert of Belgium.
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Most penetrating particle size

The upstream particle size distribution (PSD) plot is was produced using data
from both the SMPS and APS. It is necessary to combine the particle counts from both to
cover the desired particle diameter range due to particle size limitations on each
instrument. The graphical representation of the upstream particle size distribution is not
lined up perfectly because of the impactor of the SMPS becoming dirty during testing as
well as particle size related variable sensitivity of the APS. The PSD plot is created using
the average counts of the particle diameter ranges over the length of the test. The

upstream PSD can be seen in Figure 68
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Figure 68  Upstream particle size distribution from combined data from SMPS and
APS while testing of Porvair metal media filter elements using KC1
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Downstream particle size distribution plots used LAS data that was averaged over
the duration of the test. This can be seen in Figure 69. Up and downstream data combined
to generate the particle size distribution is used for the penetration curve. The particle
size distribution curve is not smooth in some places due to the low particle count in the
downstream section. The MPPS can be seen on the downstream particle size distribution

in Figure 69.
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Figure 69  Plot of the filtering efficiency versus particle diameter for testing of Porvair
metal media filter elements using KCl aerosol challenge

The filtering efficiency versus particle diameter curve is a direct comparison of
the upstream and downstream particle size distributions to see how the filter performs as
a function of particle size. This curve helps identify the most penetration particle size.
The lowest filtering efficiency for any particle size in these test elements occurs when the

filter is clean and is greater than 99.992%. The filtering efficiency curve as a function of
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particle size can be seen in Figure 70. These filter elements display HEPA efficiency. As
data shown in Figure 70 indicates that filtering efficiency increases as the filter elements
become loaded. Therefore, even lower efficiency filters can display HEPA efficiency
when partially loaded but they are likely to continue having a MPPS larger than most

nuclear grade HEPA filters (0.15 pum)
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Figure 70  Plot of the filtering efficiency versus particle diameter for testing of Porvair
metal media filter elements using KCl aerosol challenge

The most penetrating particle size at several differential pressures is shown in
Figure 71. Most penetrating particle size is the size of particle that gives the lowest
filtering efficiency. The most common particle size shown on the plot is around 225
nanometers. The efficiency curve shown in Figure 70 also gives a good representation of

the most penetrating particle size.
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Figure 71 Plot of the most penetrating particle size during testing of Porvair metal
media filter elements with KCI as challenge aerosol

Filtering efficiency and differential pressure

Significant results from filter testing includes the overall filtering efficiency of the
filter as a function of time. Clean HEPA filters are required to have 99.97% efficiency
removing particulate matter of 0.3 pm and larger from the airstream. As the filter loads
the differential pressure will increase continuously until the filter either ruptures or
becomes plugged. As the filter loads the filtering efficiency will increase until it reaches
nearly one hundred percent and remain constant until it physically fails. The plot of

filtering efficiency and differential pressure versus time can be seen in Figure 82.
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Figure 72 Plot of the total filtering efficiency and differential pressure for testing of
Porvair metal media filter elements with KCI challenge aerosol
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CHAPTER VI

CONCLUSIONS

Conclusions

The goal of this project has been to provide essential infrastructure for completing
Section FI of AG-1. Section FI will cover a broad range of filtering efficiencies. Filter
qualified under Section FI will vary from units offered as a direct replacement of Section
FC HEPA filters to units designed for a unique application. Section FI provides great
flexibility in design and performance to meet specialized needs of the user. Therefore the
test stand for qualification testing must offer flexibility of testing.

Performance data characteristics of metal media filter elements, testing
procedures, and testing hardware are needed to provide the FI Project team with
information to complete the next draft. An essential capability necessary for successful
balloting is the demonstrated existence of hardware and procedures to qualify FI filters. A
major step forward has been taken with the design, fabrication, assembly, and
characterization of the ICET FI test stand.

Section FI covers a broad range of filtering efficiencies and eight qualification
testing categories: resistance to airflow (FI-5110), test aerosol penetration (FI-5120),
resistance to rough handling (FI-5130), resistance to pressure (FI-5140), resistance to
heated air (FI-5150), spot flame resistance, (FI-5160), structural requirements (FI-5170),

and cyclic testing of cleanable filter designs (FI-5180). ICET was tasked with designing a
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test stand to provide data addressing qualification sections FI-5110, FI-5120, FI-5130, FI-
5140, FI-5170.

Subsection FI-5110 requires that resistance to airflow for non HEPA filters at the
rated flow is to be specified by the owner. Resistance to airflow for metal media HEPA
filters is not to exceed 3 in. w.c. when tested at rated airflow if they are to be used as a
replacement for FC filters. Other applications will have initial and final differential
pressure value specified by the owner. This requires that the FI test stand have a wide
range of operation for volumetric flow at elevated differential pressures. The FI project
team concluded that a flow rate of 200 ACFM would be sufficient to cover the range of
testing.

The system at ICET has been designed to withstand much higher static pressures.
However the air flow systems tested are not capable of achieving the target level of
performance. An Elmo-Rietschle claw compressor with specifications capable of
achieving operating capabilities was purchased. However, the compressor generated large
fluctuations in the flow and high noise levels. These fluctuations were corrected by using
a buffering system that includes a muffler, a large rubber hose, and two air tanks.
Pressure drop by these additional devices reduced the ability to achieve target operating
conditions. A larger air supply component will be required to meet overall objectives.

The air flow conditions for the FI test stand are controlled using a water chiller
and heat exchanger utilizing hot air before the chiller. This system is capable of
maintaining conditions specified by the FI project team of 40% to 60% relative humidity
and 60° F to 80° F for warm ambient conditions with sufficiency relative humidity. For

conditions during cold dry weather the test stand will not be able to maintain operating
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conditions. To accomplish this it is necessary to increase the relative humidity of the air
stream while maintaining the operational temperature. Increasing the reheating capacity
of the heat exchanger can be accomplished by using hot water instead of hot air.

The current draft of subsection FI-5120 states that test aerosol penetration for non
HEPA filters must meet the user defined efficiency at a user specified flow rate. A variety
of aerosols are required for testing of penetration depending on the required efficiency of
the filter. Efficiencies less than 95% require KCl particles with aerosol diameters of 0.3
to 10 pum. Efficiencies between 95% and 99.99% require DOP or DOS particles with
aerosol diameter of 0.3 pm. Efficiencies between 99.99% and 99.999% require aerosol
particles with diameters of 0.1 to 0.2 um and efficiencies between 99.999% and
99.999999% require aerosol particle diameters’ of 0.05 um, 0.07 um and 0.1 um. The
testing methods are required to follow existing standards.

For HEPA and ULPA for efficiencies between 99.97% and 99.99% aerosol
particle diameter of 0.3 um is required. Efficiencies greater than 99.999% it are required
to use, DOP, dioctyl sebacate (DOS) or equivalent aerosol particles. The test stand
designed and constructed at ICET is capable of performing these tests.

Subsection FI1-5140: Resistance to Pressure lays out requirements for filter or
filter elements to be subjected to a liquid flow sufficient to produce the maximum rated
differential pressure at the ambient temperature. Test for resistance to pressure is a design
criteria requested by the FI project team for the FI test stand. The FI test stand
constructed is not capable of utilizing liquid flow and therefore cannot meet this criteria.
A separate test stand has been designed and construction of this test stand can provide

capabilities of testing resistance to pressure. A resistance to liquid pressure test stand is
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currently under construction for evaluating 2000 ACFM radial flow HEPA filters to
differential pressure in excess of seven PSIG. This test stand can serve as a model for
finalizing the design of testing protocols for FI filter elements.

Subsection FI-5150 for resistance to heated air criteria requires for the test stand
to be capable of rated air flows for filters over a range of temperatures from 250 £10° F to
750+50° F. The current test stand has not been equipped with the high temperature
testing capabilities. However, electric air heaters at ICET are capable of producing the
required temperatures for the flow and an addition to the current test stand has been
designed to accomplish this test.

Subsection 5180: Cyclic Testing of Cleanable Filter Designs. Testing of cleanable
filter designs is currently not capable using the FI test stand, However modification of

this test stand to include back pressure jets will make this possible.

Recommendations

The following modifications are recommended for this test stand to accomplish
the full suite of performance criteria.

e Back pulse equipment added to existing test stand to facilitate evaluation
of filter performance over a lengthy series of load and clean cycles. It will
also comply with requirements of FI-5180.

e Construction of high temperature test section is essential for achieving
requirements of FI-5150.

e Install a larger blower or compressor capable of achieving the desired flow
rates. This is necessary to accommodate testing at flow rates up to 200

ACFM and at differential pressure values of 10 PSIG.
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Modification of aerosol generator to increase pressure capacity of vessel
and modify nozzle to use metal tubing for aerosol generation during
elevated pressure.

Modify the aerosol generation/delivery system to cool air temperatures
downstream of the diffusion drier to prevent exceeding air flow
temperatures in the test stand.

Addition of HEPA filters in upstream section to ensure filter elements are
being challenged with only the specified aerosol and not particulate matter
from outside sources. This will make the system compliant with
qualification testing requirements.

Addition of temperature, pressure, and relative humidity sensors upstream
of air conditioning equipment.

Automation of air conditioning process. This will implement control
strategies developed in this study.

Design and construct a more effective air buffering system. The current
system is functional but not permanent.

Design and construct equipment for adding moisture to air stream for
increasing relative humidity when necessary. This will provide capability
to achieve elevated relative humidity conditions during winter months.
Design and construct equipment for providing dry air to decrease relative
humidity when necessary. Dual column air driers can be used to

accomplish this need.
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e Addition of heated air or hot water used as the hot working fluid in the
reheat heat exchanger. This will provide additional heating capacity for
very cold air intake.

The current FI test stand and its current equipment list fell short in several
categories of the performance criteria outlined by the FI-project team. However, this test
stand is able to produce useful data for performance and qualification data to assisting in
the balloting of section FI. Modification to achieve overall objectives will not be difficult
and the estimated cost is on the order of $80,000. Implementation of the modification
actions suggested above will equip the FI test stand to accomplish all the required
performance criteria. The FI test stand has shown the necessary infrastructure required to
accomplish qualification procedures and collect a full suite of qualification data. The
design and construction of this test stand is a major step in the process preparing the next

draft of Section FL
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APPENDIX A

LIST OF INSTITUTE FOR CLEAN ENERGY TECHNOLOGY PROCEDURE,

INSTRUCTIONS, AND TEST CONTROL DOCUMENTS
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10.

1.

12.

13.

14.

15.

Procedure documents

. HEPA-002 Filter as Received Inspection

HEPA-003 Data Archiving Procedure
HEPA-005 Laboratory Notebooks
HEPA-006 Excel Validation Procedure
HEPA-007 Version Control Procedure
HEPA-009 Receipt Inspection

Instruction documents

. Aerosol Atomizer Readiness and Operation Instruction

APS Operation Instruction

LAS Operation Instruction

SMPS Operation Instruction

LPC Operation Instruction

Pilat Mark 5 Cascade Impactor Instruction

Powder Feeder Calibration Instruction

SMPS Calibration Instruction

ATI Photometer Readiness and Operation Instruction
ELPI Operation Instruction

FI Filter Installation Instruction

FI HEPA Filter Removal and Mass Determination Instruction

HEPA-LSTS-001 Test Stand Instruction

HEPA-LSTS-002 Sensor Repair Replacement Instruction Sheet

HEPA-LSTS-002 Test Stand Leak Test Instruction Sheet
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16. HEPA-LSTS-003 Sr Insertion Instruction
17. HEPA-LSTS-003 Sr Removal Instruction
Test control documents
1. HEPA-LSTS-001 Test Stand Startup
2. HEPA-LSTS-002 Leak Test of the Test Stand
3. HEPA-LSTS-003 Stromtium Source Chaning Out Procedure
4. HEPA-LSTS-004 Filter Installation
5. HEPA-LSTS-007 Radiation Exposure Control and Monitoring Procedure
6. HEPA-M&TE-002 SMPS Readiness and Operation
7. HEPA-M&TE-003 APS Readiness and Operation
8. HEPA-M&TE-009 LAS Readiness and Operation

9. ICET High Output Aerosol Generator Operating Procedure
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APPENDIX B

FITEST STAND DESIGN DRAWINGS
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Figure 100  FI test stand pipe #1
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Figure 102  FI test stand pipe #3
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FI test stand pipe #4

Figure 103
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Figure 104  FI test stand pipe #5
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FI test stand pipe #6

Figure 105
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Figure 106  FI test stand pipe #7
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Figure 107  FI test stand pipe #8
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FI test stand pipe #9

Figure 108

184

S
S}
(&)
o
o
®
c
)
€




prio e 133RS [V TSNV 80T T s yocnqoar. ctiou
N wEa) 30§ Amasg

o e

TALISHEIAINN

ety | AIVIS IddISSISSII

S
S}
(&)
o
o
®
c
)
€

adid SS 0F Y2S .9
dan

ebue|4 uvo-diis SS sqi0sL .9

O

f eL |

185

Figure 109  FI test stand pipe #10
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Figure 110  FI test stand pipe #11

186

S
S}
(&)
o
o
®
c
)
€




FFREEIEaRs [ VISNY 007 [ ooy cocs SR

wIN WE) J0j Mg

P

unua TALISHIAIND

puels 189 |4 AIVLS IddISSISSIN

www.manharaa.com

WSEQ0C X009 Bz
Ad-LAH .8 # [#PoN
U] ‘feubis mol4 Aewind

unjuBA /

187

FI test stand venturi

Figure 111
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Figure 112 FI test stand assembly
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FI test stand tube sheet

Figure 113
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Figure 114  FI test stand tube sheet drawing 2
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Figure 115  FI test stand high pressure
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Figure 116  FI test stand high pressure drawing 2
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FI test stand high temperature

Figure 117
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APPENDIX C

FITEST STAND TEMPERATURE AND RELATIVE HUMIDITY CONTROL

INSTRUCTIONS
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FI test stand temperature and relative humidity control instructions

1.0 Ensure that the test stand is ON and filters installed properly.

2.0 Operate test stand for 1 hour

3.0 Record temperature and relative humidity

4.0 Determine parameter that is outside of specified range (Temperature 60-80°F and
relative humidity 40-60%)

5.0 Adjust heat bypass, chiller bypass, or chiller temperature according to the following
troubleshooting procedure.

5.1 Problem: Problem: Temperature too low

5.1.1

5.2 Problem:

5.2.1

5.3 Problem:

5.3.1

5.4 Problem:

5.4.1

5.5 Problem:

5.5.1

5.6 Problem:

5.6.1

5.7 Problem:

5.7.1

5.8 Problem:

5.8.1

Fix: Reduce bypass on reheat heat exchanger or raise temperature
on chiller
Temperature too high

Fix: Increase bypass on reheat heat exchanger or decrease
temperature on chiller
Relative Humidity too low

Fix: Increase temperature on chiller
Relative Humidity too high

Fix: Decrease temperature on chiller

Temperature too low relative humidity too low

Fix:Increase Chiller temperature if temperature still low decrease
reheat heat exchanger bypass

Temperature too low relative humidity too high

Fix: Decrease chiller temperature and decrease reheat heat
exchanger bypass

Temperature too high relative humidity too low

Fix: Bypass reheat heat exchanger and increase chiller temperature
(Most difficult problem to fix)

Temperature too high relative humidity too high

Fix: Decrease chiller temperature and decrease reheat heat
exchanger bypass

6.0 Adjust suggested parameter and allow test stand to operate for 10 minutes.
7.0 Parameter Adjustment
7.1 Parker Hyperchill (Chiller) Follow instructions in hyperchill user manual
8.0 Record temperature and relative humidity
9.0 If out of range repeat step 5. If within range begin testing
10.0  Monitor conditions throughout testing.
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APPENDIX D

FI HEPA FILTER TEST STAND ASSEMBLY AND DISASSEMBLY

INSTRUCTIONS
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FI HEPA filter test stand assembly and disassembly
Assembly

1.0 Using chain hoist and slings insert tube sheet with filter elements into middle section
of the housing which is standing up right on the ground (not on base) and use bolts to
secure into place

2.0 Lift middle section of housing and tube sheet with filters from the ground onto base
of housing using chain hoist attached to slings.

3.0 Bolt the middle section of housing to the base of the housing at the connecting
flanges

4.0 Remove Chain hoist and slings once middle section of the housing is attached.

5.0 Attach the chain hoist and slings to the cap of the filter housing and lift and set in
place on top of the middle section.

6.0 Using the connection flanges bolt the cap to the base of the housing and the
downstream section of piping. Loosen the tension from the chain hoist slings and
leave attached to housing cap.

7.0 Check all bolts and connections to ensure the housing is securely bolted down.

Disassembly

1.0 Turn test stand flow OFF.

2.0 Connect cap to chain hoist and remove bolts connecting cap to middle section and
downstream piping.

3.0 Using chain hoist lift and remove cap of housing.

4.0 Secure the tube sheet to the middle section of housing with bolts.

5.0 Lift middle section of housing and tube sheet with filters from base of housing using
chain hoist attached to slings and lower to the ground next to the test stand.

6.0 Remove bolts securing tube sheet to housing and remove slings from middle section
of housing

7.0 Using chain hoist and slings remove tube sheet with filter elements attached from the
middle section of the housing and place on stand.

8.0 Unscrew and remove individual filter elements from tube sheet

198

www.manaraa.com



Flow

Connection = Middle
Flanges Section
~ Base

Figure 119  Housing of FI test stand showing sections and connection points
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Figure 120  Tube sheet for FI metal media elements
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